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1 Introduction

Buying a house is the most important financial decision that households make in
their lifetime. Understanding the factors driving the willingness to pay for a house
is, therefore, of great importance. While several papers have examined the role of
location, credit conditions, income and other factors (e.g. Duranton and Puga, 2015;
Van Nieuwerburgh and Weill, 2010; Mian and Sufi, 2009), in this paper, I focus on how
uncertainty about the market value of a house affects its transaction price and return.

This uncertainty, defined as the expected variance of the distribution from which the
price of a house might be drawn at a point in time, differs substantially across individual
houses (Jiang and Zhang, 2022; Kotova and Zhang, 2021). There are different factors
that can contribute to price uncertainty in housing markets. The heterogeneity and
illiquidity of houses introduce uncertainty about the outcome of the bargaining process
between buyers and sellers (Goetzmann et al., 2021; Sagi, 2021). Additionally, houses
are generally held for extended periods of time, rendering them susceptible to various
shocks that can impact their fundamental value (Han, 2013; Sinai and Souleles, 2005),
making them harder to value ex-ante.

However, we still know little about the extent to which price uncertainty influences
the trading decisions of buyers and sellers and, consequently, impacts housing prices
and returns. This is a challenging task, as it requires highly granular data on housing
markets. Using a newly-collected transaction-level dataset covering the universe of
apartment transactions over the last 40 years in four of the largest German cities1, I
am able to shed light on this issue. I find evidence that this uncertainty is priced
in housing markets: apartments with higher price uncertainty trade, on average, at
lower prices. The magnitude of the effect is large, I estimate that apartments with
high price uncertainty trade at a price that is, on average, 5% lower than comparable
apartments with lower price uncertainty, a result in the same order of magnitude as
existing estimates of foreclosure discounts (Conklin et al., 2023).

Nevertheless, I find that these apartments can still be rented out at standard rates,
resulting in higher rental yields, as measured by the ratio of net rental income to
transaction price. I then measure total returns as the sum of rental yields and capital
gains at the apartment level. I find that apartments with greater price uncertainty tend
to yield higher total returns, due to higher rental yields. Again, these differences are
economically significant. The data suggests an average annual return premium of 50

basis points for apartments exhibiting greater price uncertainty. This is approximately
10% of the average yearly total housing return in Germany over the past four decades.2

I rationalize these findings through the lens of a bargaining model. The model

1Berlin, Hamburg, Cologne and Duesseldorf.
2I take the estimates for Germany from Amaral, Dohmen, Kohl, et al. (2021).
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features a risk-averse housing investor who acquires a property for renting and future
sale. Consistent with my empirical results, the model predicts that properties with
greater re-sale value uncertainty will transact at lower prices and have higher rental
yields. Assuming that matching frictions drive the price uncertainty, the model also
predicts that total returns are higher due to increased rental yields. Confirming the
assumptions of the model, I find that apartments with greater price uncertainty are
traded in smaller and less liquid markets, which suggests that matching frictions in the
housing market underlie the uncertainty surrounding transaction prices.

The primary data source I use in this paper is a transaction-level dataset introduced
in Amaral, Dohmen, Schularick, et al. (2023), which contains detailed information on the
universe of residential real estate transactions in large German cities over the last half-
century. The dataset provides comprehensive information on property characteristics as
well as transaction types. This feature enables me to control for differences in observable
property characteristics and effectively identify transactions of the same properties over
time. The data set also includes information on the realised rental income after costs,
which allows me to build net rental yields at the property level.

My focus is on the most prevalent housing type in large German cities: apartments.
The market for apartments in large German cities provides an ideal setting to examine
the relationship between price uncertainty and housing returns. In contrast to U.S.
cities (Glaeser and Gyourko, 2007), there is minimal segmentation between the home-
ownership and rental markets for apartments in large German cities. Owner-occupied
and rental apartments exhibit only marginal differences in terms of their location and
characteristics.

Following Jiang and Zhang (2022), I measure price uncertainty at the apartment
transaction level as the predicted variance of the pricing error from a hedonic housing
price model. I provide evidence that the error in the hedonic model is not driven by
omitted variable bias or is simply noise. I do this by showing that the errors are spatially
independent and that their magnitude is highly persistent over time within apartments.

Then, I introduce the measure of price uncertainty into a hedonic model of house
prices and show that higher uncertainty significantly predicts lower transaction prices
for all cities in my sample. Importantly, I also show that properties with higher
price uncertainty do not have lower demand, as proxied by online search behaviour,
thus reinforcing that uncertainty is being priced in. These effects are economically
very relevant: transitioning from the lowest to the highest quintile of price uncertainty
predicts a decrease in the final transaction price by approximately 5% to 7% for properties
transacted in the same neighborhood and year-quarter, while controlling for property
characteristics.

However, the effect is notably weaker for rents. Rental rates are similar across
properties with different price uncertainty. The rationale behind this outcome is that
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such apartments face greater illiquidity in the sales market compared to the rental
market. This aligns with the fact that in large German cities, the rental market is larger
and more liquid than the sales market. I then find that properties with higher price
uncertainty exhibit, on average, higher rental yields. Transitioning from the lowest to
the highest quintile of the price uncertainty distribution predicts an increase of between
35 and 60 basis points in rental yields for transactions during the same year-quarter in
the same neighborhood, while controlling for property characteristics.

By identifying repeated sales of the same apartments over time, I am able to con-
struct property-level capital gains, which, when combined with rental yields, provide
measures of property-specific total returns. I then find that apartments with higher
price uncertainty experience, on average, the same rate of price appreciation as other
apartments. In other words, the data shows that price uncertainty is uncorrelated with
the level of capital gains in housing markets. Finally, I show that properties with higher
price uncertainty have, on average, higher total returns, driven by rental yields.

To make sure my results are not driven by time-varying market conditions, I employ
portfolio sorting methods and hedonic regressions to construct a time series of prices
and returns for properties with high and low price uncertainty. I show that portfolios
with high price uncertainty yield higher total returns, and this return premium is not
driven by heterogeneous exposure to systemic risk as measured by the returns on city
market portfolio. Additionally, I conduct a battery of robustness tests to ensure that my
results are not influenced by measurement error and to exclude alternative mechanisms.
Importantly, I do not find that properties with higher price uncertainty have lower
demand based on online search behaviour.

I map these empirical findings to a bargaining model featuring a risk-averse investor,
who faces uncertainty regarding the future rental income and resale value of the house.
Intuitively, the investor’s risk aversion explains why properties with greater price
uncertainty exhibit lower transaction prices and higher rental yields. More interestingly,
the model reveals that the impact of price uncertainty on capital gains depends on the
source of that uncertainty. Under the assumption that price uncertainty arises from
matching frictions, the model predicts that increased price uncertainty does not result in
higher capital gains, as supported by the data.

In line with the mechanism of my model, I find that apartments with higher price
uncertainty are traded in smaller markets. More specifically, there is a lower number of
similar properties on the market, making it more challenging to price these apartments.3

Additionally, I show that properties with higher levels of price uncertainty are less liquid.
On average, they have a longer expected time on the market and a lower probability of
sale. Furthermore, the final transaction price is, on average, significantly lower when
compared to the original asking price.

3This concept builds on the idea of house atypicality (Haurin, 1988).
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Related literature This paper contributes to the literature on price dispersion in
housing markets (Giacoletti, 2021; Sagi, 2021; Piazzesi and Schneider, 2016) by showing
how the interaction between rental and sales markets affects transaction prices and
returns. Jiang and Zhang (2022) show that price uncertainty impacts the quality of
housing as collateral and, consequently, negatively affects the credit conditions offered
by banks. I complement this work by showing that price uncertainty also influences
transaction prices and returns.

This paper also speaks to the literature on the risk factors driving returns to housing
(e.g., Demers and Eisfeldt, 2022; Amaral, Dohmen, Kohl, et al., 2021; Han, 2013; Cannon
et al., 2006). While this literature has primarily focused on identifying systemic housing
risk factors, this paper provides evidence that property-specific idiosyncratic risk factors
are priced in housing markets.

My research also connects to the literature on decentralized asset markets. Duffie
et al. (2007) develop a search-and-bargaining model for financial assets traded in decen-
tralized markets to understand how trading frictions affect asset prices. Gavazza (2011)
constructs a model of the commercial aircraft market to illustrate how market thickness
affects liquidity and prices. The author shows that airplanes traded in thinner mar-
kets typically trade at lower prices, mirroring the effect I find for housing assets. The
interplay between liquidity in the rental and sales market aligns with the theoretical
framework presented in Pagano (1989), who examines how trading frictions can influ-
ence the relationship between market size and asset liquidity across various markets
and thus determine the distribution of trading activity.

The rest of the paper is structured as follows. Firstly, I present the data and provide
evidence on market liquidity in the German housing market. Secondly, I describe the
measurement of price uncertainty and present the empirical framework. Thirdly, I show
that properties with higher price uncertainty are sold at a discount and have higher
returns. I present the data and provide evidence on market liquidity in the German
housing market. Fourthly, I derive a theoretical framework and characterize the optimal
bid of a risk-averse investor when facing uncertainty about future cash-flows. Fifthly, I
provide empirical evidence linking price uncertainty to market size and liquidity at the
property level. The last section concludes.

2 Data

In the empirical analysis of this paper, I combine three distinct datasets. The first
dataset comprises comprehensive transaction-level information on the universe of real
estate transactions in major German cities dating back to the 1980s. I employ this dataset
to estimate price uncertainty and construct two market liquidity measures for four
large German cities. The second dataset, which I developed from scratch, contains net
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rental values in German cities based on property size, age, and location, spanning from
the 1980s onwards. I use this data set to provide rental income information for those
observations for which it is missing in the main transaction data set. The third dataset
encompasses real estate advertisements in Germany since 2010. I merge this dataset
with the transaction-level data to obtain additional liquidity measures at the transaction
level. I will now provide a more detailed description of each dataset.

Transaction-level data set - This data set, introduced in Amaral, Dohmen, Schularick,
et al. (2023), consists of transaction-level data encompassing all residential real estate
transactions in 20 major German cities dating back to the 1960s. The underlying data is
sourced from the local real estate expert committees, known as ”Gutachterausschüsse,”
who receive comprehensive information about each real estate transaction from notaries.
This valuable information encompasses the transaction price, date, as well as various
property characteristics such as size, location, and building year. Additionally, it
includes details about the type of transaction, including whether it was conducted
at arm’s length or not. In many instances, this data is further enriched by gathering
additional information directly from buyers and sellers regarding the property, such
as whether the property has a garage or not. The scope of this novel data set is, to the
best of my knowledge unique, in that existing transaction-level data sets only contain
representative sales information for a shorter period of time.4

For the main empirical analysis, I only use data on sales of apartments. The reason
for this is twofold. Firstly, the housing stock in large German cities is mostly composed
of apartments and therefore there are considerably more apartment sales than of other
types of housing. This contrasts with most cities in the U.S., where the predominant
type of housing is single-family. Secondly, apartments are more homogeneous types of
housing than single-family or multi-family housing. This increases the statistic precision
of the hedonic analysis, which I will carry on later.

Before conducting the empirical analysis, I ensure the integrity of the transaction
data by meticulously filtering out non-arm’s length sales. This encompasses a range of
transactions, such as property sales between relatives, leaseholds (”Erbbau”), package
sales involving multiple properties sold together, sales of social housing, transactions
involving official government institutions at the local or federal level, foreclosures and
any sales flagged by the ”Gutachterausschüsse” as not aligning with genuine market
prices. Additionally, I exclude all transactions that have missing information regarding
the date, sales price, size, location, or building year. To enhance the sample quality, I
implement supplementary cleaning procedures. Specifically, I eliminate ”house flips”
and cases where the reported sale price appears anomalous, as well as duplicates. This

4For example, in the case of the U.S. existing data sets, such as Corelogic, only have a reoresentative
sample since the 2000s.
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is accomplished by removing all transactions of a property if it undergoes two sales
within a year or if its annualized appreciation or depreciation exceeds 40% for any
given pair of sales. This approach adheres to the standard methodology established
in the literature (e.g. Giacoletti, 2021). Please note that in all specifications, the sales
price measure I utilize is net of additional costs that do not directly pertain to the value
of the structure and land of the respective property. In other words, the sales price is
adjusted for inventory costs (e.g., if the kitchen is included in the apartment sale) or
additional infrastructure expenses (e.g., when the owner of the apartment is entitled
to use a parking spot or garage). The valuation of these additional costs is specified in
the contract and is also reported by the ”Gutachterausschüsse”. Table 7 presents the
summary statistics of the data by city after the cleaning procedures.

Rental values data set - To complement the rental income information provided by
the ”Gutachterausschüsse”, I collected net rental value data from an independent source.
I then merge it with the transaction-level data. The rent data is obtained from the
so-called ”Mietspiegel”, which provides rent per square meter estimates for apartments
in German cities based on factors such as size, age, and location of the apartments. The
rent estimates are net of utilities and maintenance costs. These rent estimates are then
matched with the transaction data, conditional on the size, age, and location of the
property. The specific details regarding the data source and the matching process are
provided in Appendix J. In the empirical section, I will present the results for both the
full sample, where transactions were matched with rents based on characteristics, and
for the subsample in which both transaction prices and rental income are observed for
the same property at the same point in time.

Real estate advertisement data - To be able to measure asset liquidity at the trans-
action property level, I combined transaction-level data with advertisement data. The
advertisement data was sourced from Value AG, a German real estate company that
has consistently been collecting online real estate advertisements and integrating them
with data from local real estate agents, resulting in a comprehensive and extensive data
set that covers the period from 2012. This data set from Value AG encompasses crucial
information on property characteristics obtained from the advertisements. Leveraging
this information, I employed a nearest neighbor algorithm to match the transaction data
with the advertisement data.

2.1 Liquidity in German Housing Markets

Several studies examining the structure of decentralized asset markets have pro-
vided evidence that larger markets enhance the efficiency of matching between buyers
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and sellers. This effect results in reduced price dispersion and decreased uncertainty
surrounding the value of traded assets (Sagi, 2021; Gavazza, 2011). In this section, I
present various pieces of evidence regarding the size and liquidity of the rental and
sales markets for apartments in major German cities. Overall, the empirical evidence
indicates that the apartment rental market is significantly larger, thicker, and more liquid
than the apartment sales market.

Using data from the largest real estate online platform in Germany for the period
between 2010 and 2018.5 For this analysis, I exclude from the original dataset all ads
with missing information about price, rent, or size. Additionally, I also remove ads
flagged as potential duplicates. This issue may arise when an ad is deliberately removed
and then re-uploaded shortly afterward to increase its visibility.

In Table 1, I present various indicators for the rental and sales markets of apartments
in the four cities in the sample. The second column shows the homeownership rate
in 2010 by city.6 On average, only one-fifth of the population actually resides in
owner-occupied housing, while the rest rents. Similar to other developed countries,
homeownership rates in German cities are substantially below the national average,
which has remained around 45% over the last decade (Kohl, 2017).

The third and fourth columns display the average number of sales and rental ads for
apartments per year by city.7 On average, each year there are four times more rental
ads than sales ads, confirming that the rental market is not only larger in terms of its
inventory but also in terms of the number of properties available.

However, what truly matters is the number of potential buyers per ad, i.e., the market
thickness. To approximate the market thickness, I use data on the number of times
the seller was contacted by potential buyers through the website for a specific ad. For
clarification, this metric is not equivalent to hits per ad. To contact the seller, a potential
buyer (or renter) must click on the ad and then select the ’Contact Seller’ option. The
average number of contacts for sales and rental ads is displayed in columns 5 and 6.
On average, rental ads attract four times as many customers showing explicit interest
compared to sales ads, indicating that the rental market is considerably thicker.

Finally, in columns 7 and 8, I present the average number of days that sales and rental
ads remain on the website. Not surprisingly, we observe that sales ads stay, on average,
twice as long on the website, suggesting that the time on the market is substantially
shorter for apartment rentals than for apartment sales.8 Overall, there is considerable
evidence that the rental market for apartments is larger and more liquid than the sales

5The data is originally from www.immoscout.de and was provided by RWI and Immobilien-
scout24 (2021). The data is available from 2007 onwards, but due to issues in the identification of
duplicate ads, it only becomes representative from 2010.

6The data is obtained from Eurostat.
7I determine the year based on the initial date of the advertisement.
8Furthermore, rental ads potentially have a much higher chance of actually resulting in a rental contract

than sales ads have of resulting in a sales contract.
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market in large German cities.

Table 1: Summary statistics for apartment sales and rentals by city, 2010-2018

# ads per year Contact clicks per ad Duration of ads (in days)

City Homeownership
rate (in %)

Sales Rentals Sales Rentals Sales Rentals

Berlin 13.7 25767 109804 4 32 26 18

Cologne 26.7 7086 27517 12 50 40 20

Duesseldorf 21.6 6567 28544 10 28 35 21

Hamburg 21.4 9883 27657 8 33 36 17

Note: The homeowneship rate refers to 2010 and the data source is Eurostat. The rest of the data refers to the period
2010-2018 and is based on own calculations with data from www.immoscout.de, which provided to me by RWI and
Immobilienscout24 (2021). ”Duration of ads” measures the days between the day the ad was posted and the day
the ad was removed. ”Contact clicks per ad” refers to the average amount of times that the seller was contacted by
potential buyers via the website about the ad.

3 Measurement and Empirical Framework

Following the real estate literature (e.g Kotova and Zhang, 2021), I measure idiosyn-
cratic price deviations at the apartment transaction level as the difference between the
transaction price and the expected market value, which is determined using a hedonic
regression estimated on apartment repeat sales.9

For each city separately, I regress the natural logarithm of the transaction price for
property i in year-quarter tq on a time-invariant apartment fixed effect, yi, year-month
fixed effects, ηtm, year-quarter-neighborhood fixed effects, κn,tq, and a second-order
polynomial function of apartment characteristics (age and size) interacted with year
fixed effects, fc(xi, ty):

ln(pi,tq) = yi + ηtm + κn,tq + fc(xi, ty) + ui,tq, (1)

where ui,tq is a mean-zero error term with variance σ2. Specification (1) combines
elements of repeat-sales and hedonic models of housing prices. The apartment fixed
effect term, yi, absorbs all features of an apartment, observed and unobserved, which are
time-invariant, such as a balcony facing the sea or the floor number. The ηtm and κn,tq

terms absorb parallel shifts in housing prices in a city and in neighborhoods over time,
for example due to gentrification.10 The fc(xi, ty) term allows apartments with different
observable characteristics xi to appreciate at different rates: for example, the fc(xi, ty)
term allows larger apartments to appreciate faster than smaller apartments, or newer
apartments to appreciate faster than older apartments. I use an additive functional form

9A very similar approach to estimate the market value is employed in Kotova and Zhang (2021);
Buchak et al. (2020).

10More precisely, I use the definition of ”Stadtbezirke” to divide the cities in different neighborhoods.
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for fc(xi, ty):11

fc(xi, ty) = gsqmt
c (sqmt, ty) + gyrbuilt

c (yrbuilt, ty) (2)

The functions gyrbuilt
c and gsqmt

c are interacted second-order polynomials in their con-
stituent components. The squared terms of the polynomial function accommodate
the possibility that the effect of size and age on transaction prices may vary along the
distribution. For instance, larger apartments might appreciate at a different rate than
smaller apartments, and this effect may not follow a monotonic pattern. Please note that
for Hamburg, information identifying the exact apartments was not available. As such, I
use building fixed effects instead of apartment fixed effects to measure price deviations
for Hamburg. For more details please refer to Appendix C.3.

The residuals, ui,tq from equation (1) quantify the discrepancy between the transaction
price and the expected market value of the apartments. Consequently, the squared
residuals serve as a measure of price dispersion at the apartment transaction level. Table
2 displays the summary statistics for the apartment repeat sales for all cities in the
sample.12 In terms of the standard deviation of the residuals, Cologne has by far the
lowest level, 10.1%, followed by Duesseldorf with 14.9%, Hamburg with 17.7% and
Berlin with 18.2%.13 Using the same method Kotova and Zhang (2021) estimate the
standard deviation of residuals for single-family houses in California to be in the range
between 11.1% and 13.5% depending on the city.

3.1 Stylised facts about price dispersion

While the concept of price dispersion is clear in theory, the infrequent transactions of
properties, coupled with the significant heterogeneity among houses, complicates the
empirical task of estimating price dispersion. Therefore, in this section, I first present
additional evidence regarding the distribution of estimated price dispersion across space
and over time to validate the estimates. Secondly, I will discuss several potential biases
that could arise in equation (1) and demonstrate that the main results of the paper are
not influenced by these biases. For the sake of brevity, the results in this section will be
referenced in the text but will be presented in Tables and Figures in appendices D and I.

Distribution of dispersion across space and over time By definition, the market value
of a property should reflect the value of common property characteristics in the market.
In other words, the residuals in Equation (1) should capture the cross-sectional variation

11In principle, it would be better to estimate a fully interacted polynomial in all house characteristics.
However, as argued by Kotova and Zhang (2021), that is not computationally feasible.

12Table 7 in the Appendix presents the summary statistics for all apartment sales, i.e. not just the repeat
sales.

13Figure 9 in the Appendix plots the distribution of residuals, uit, with the mean and standard deviation
for the cities in my sample separately.
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Table 2: Summary statistics for apartment repeat sales by city

Berlin

N Mean SD P25 Median P75

Price (thousand €) 67195 186 162.3 83.9 135 229

Size (m2) 67195 74 28.8 53.5 67.3 89.2
Construction year 67195 1932 38.3 1903 1912 1961

Residuals, ui,tq (%) 67195 0 18.3 -10.9 0 11.3
Rental yield (%) 67195 3.5 1.7 2.3 3.2 4.3

Hamburg

N Mean SD P25 Median P75

Price (thousand €) 49506 306 263.6 130 234 394

Size (m2) 49506 76 30.8 54 70 91

Construction year 49506 1974 41 1953 1978 2012

Residuals, ui,tq (%) 49506 0 17.8 -8.4 0 9.5
Rental yield (%) 49506 4.2 2 2.9 3.8 5

Cologne

N Mean SD P25 Median P75

Price (thousand €) 49963 140 103.6 75 112.5 170

Size (m2) 49963 69 24.7 52.4 67 84

Construction year 49963 1968 23 1959 1971 1983

Residuals, ui,tq (%) 49963 0 13.6 -7.8 0 7.9
Rental yield (%) 49963 5.7 2.4 4.1 5.4 6.8

Duesseldorf

N Mean SD P25 Median P75

Price (thousand €) 25238 156 136.2 76.7 117.4 185

Size (m2) 25238 74 28.7 54 70 90

Construction year 25238 1961 24.7 1953 1962 1976

Residuals, ui,tq (%) 25238 0 14.8 -8.4 0 8.7
Rental yield (%) 25238 5 2.2 3.7 4.6 5.8

Note: Table reports summary statistics for all apartment resales for Berlin (1986-2022), Hamburg (2002-2022),
Cologne (1989-2022) and Duesseldorf (1984-2022). Note that before 1992 the data for Berlin refers only to West-
Berlin. Prices are in nominal terms. Please note that in the case of Hamburg, the total number of sales does not refer
to repeat-sales, as data on the number of the apartments is missing in the original data. Please refer to Appendix C.3
for more information.

in the idiosyncratic component of housing prices. This aligns with the bargaining model
in Section 2, where, in the first period, the investor encounters uncertainty surrounding
the idiosyncratic component of prices in the final period. To test whether the residuals
are idiosyncratic, I now examine their spatial distribution. If Specification (1) is correctly
defined, then we should expect the residuals to be spatially independent. To test for
this, I estimate spatial correlation in the residuals, ui,tq using Moran’s I. A positive
Moran’s I indicates that apartments with positive residuals are surrounded by other
apartments with positive residuals. In Figure 10, I plot Moran’s I for the residuals and
the transaction prices. In contrast to the transaction prices, the results suggest that the
residuals are spatially independent, as I cannot reject the null hypothesis of no spatial
autocorrelation. In Appendix D, I provide a more detailed explanation of how Moran’s
I is estimated and present the results of this analysis.
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In the bargaining model in Section 2, I assume that the investor knows the variance
of the sales price in the final period. In other words, the investor is aware of the price
dispersion of a given house. To justify this assumption, it is necessary for the estimated
price dispersion, u2

i,tq, to be predictable over time. Specifically, I test for all pairs of
transactions in the data set whether the variance of the residuals at the point of sale
predicts the variance of the residuals at the point of re-sale:

u2
i2 = β1u2

i1 + β2hpi + κnt + λm + ϵit, (3)

where ui2 and ui1 are the idiosyncratic price residuals at the points of re-sale and sale
respectively of property i. hpi measures the holding period in months for property i,
while δm are monthly fixed effects and κt are neighborhood fixed effects. The results can
be found in Table 8, which shows that properties sold and re-sold in the same neighbor-
hood and in the same month show considerable persistence in their idiosyncratic price
dispersion. An increase in one standard deviation of the sales’ price dispersion predicts
an increase in 0.66 standard deviations in the resale price dispersion. One concern is
that these results are being driven by the buyers, if a specific buyer is bad at pricing
a house at the moment of sale, then probably as well at the moment of re-sale. This
could potentially explain the high level of persistence in the variance. To address this
concern, I show that the persistence in variance is also strongly positive and statistically
significant when testing the relation between first and third sale. The results can be
found in Table 9 in Appendix D. Additionally, the cross-sectional correlation at the point
of sale and re-sale of idiosyncratic shocks is 0.66, which is higher that than most risk
factors used in the stock pricing literature (Bali et al., 2016). The results can also be
found in Appendix D.

Biases The baseline regression model in (1) may yield biased results due to several
factors. Therefore, I highlight potential issues that may arise and explain how I address
them in the robustness analysis presented in Section I of the appendix.

Firstly, in regression (1), I incorporate apartment fixed effects. However, this ap-
proach may pose challenges since most properties are sold only a few times within
the sample period. This could potentially lead to an ”incidental parameters problem”
(IPP) problem, whereby the estimate σ̂2 would be inconsistent. Moreover, it is crucial
to consider whether properties sold more than once are representative of the entire
population of transacted properties. If these repeat sales do not accurately reflect the
broader sample, the generalizability of my results could be compromised. To address
these concerns, I run regression (1) while excluding the apartment fixed effects. The
findings of this analysis are presented in Section I of the Appendix, where I show that
the main results remain consistent and robust.
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Secondly, in my baseline regression analysis, I do not explicitly account for the
influence of varying holding periods on the sales prices. It has been demonstrated by
Giacoletti (2021) that longer holding periods are correlated with greater idiosyncratic
shocks. To ensure that this factor is not driving my results, I conduct an additional
regression analysis that incorporates holding period fixed effects. The findings of this
analysis demonstrate that the results remain robust and unaffected by the inclusion of
holding period fixed effects.

Thirdly, it is important to consider that sales prices may be influenced in a systematic
manner by the characteristics of both buyers and sellers. If certain types of households,
such as affluent ones, tend to concentrate in specific areas, then regression (1) already
accounts for this by incorporating location fixed effects. However, it is also possible
that businesses or large investment funds have the ability to negotiate more favorable
prices compared to individual households. To address this potential influence, I perform
an additional regression analysis that includes buyer and seller fixed effects, along
with their interaction term. These controls account for whether the buyers or sellers
are private companies or households. The robustness analysis presented in Section I
demonstrates that the results remain unaffected even after incorporating these additional
controls.

3.2 Empirical Framework and Identification

The theoretical framework outlined in Section 2 guides the empirical tests concerning
the effects of price dispersion on transaction prices and returns. While in the model, the
investor adjusts the optimal bid based on the expectation of price dispersion, the price
dispersion measured in the previous section reflects realized price dispersion. In other
words, the residuals, ui,tq, from Equation (1) are only observed ex-post and thus represent
a biased measure of investors’ expectations. Therefore, I approximate the information set
available to a potential investor about a specific property before purchasing it. To achieve
this, I employ the method introduced in Jiang and Zhang (2022). Using the observable
characteristics of the properties and the transaction values of similar properties that
were sold in the same period, I obtain a prediction of idiosyncratic price dispersion at
the property level. More specifically, I estimate the following regression:

u2
i,tq = gc(xi, tq) + ϵit (4)

σ̂2
i,tq = ĝc(xi, tq), (5)

where u2 are the squared residuals estimated from equation 1 and gc(xi, tq) is a smooth
function of observable property characteristics interacted with quarter fixed effects. The
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characteristics are size, age and location and g is an additive function that takes the
form:

gc(xi, tq) = gloc
c (tq, κ) + gsqmt

c (tq, sqmt) + gyrbuilt
c (tq, yrbuilt), (6)

where κ are neighborhood fixed effects and gsqmt and gyrbuilt are second-order polynomi-
als that interact time quarter fixed effects with size and year of construction respectively.
I then use the predicted values, ĝc(xi, t), as an estimate of the property transaction level
predicted price dispersion.

Cross-sectional variation The objective of the empirical analysis in this paper is
to investigate whether expected price dispersion can predict prices and returns in
the housing market, taking into account property characteristics. Consequently, the
challenge in this context lies in the potential correlation between predicted dispersion
and property characteristics that can impact transaction prices. To address this challenge,
the analysis will involve comparing contemporaneous transaction prices of properties
that are similar in size, age, and location but differ in terms of their predicted dispersion.
To clarify, this section of the paper focuses on exploring the cross-sectional variation
in the data. This approach differs from most asset pricing settings, which concentrate
on more liquid asset classes. In the context of housing markets, analyzing the time
variation of different properties is often impractical because each property is typically
sold only every few years, and properties vary significantly in their holding periods.
Since the measure of predicted dispersion will be derived from estimated coefficients, the
empirical results in this section will rely on two-stage least-squares (2SLS) regressions,
in which :

Stage 1: u2
i,tq = gc(Xi, tq) + BXXi + ηtm + κn,tq + ei,tq (7)

Stage 2: yi,tq = γû2
i,tq + BXXi + ηtm + κn,tq + ϵi,tq, (8)

where Xi is a vector of property characteristics that include size and age, κnt are
year-quarter fixed effects and µdt are year-neighborhood fixed effects. The dependent
variable yi,tq can refer to the transaction price, the net rent at the time of the transaction
or the rental yield.14

14Please note that all regression output results presented in this paper will display standard errors
that have been adjusted for the use of an estimated regressor in the second stage, achieved through the
utilization of a sandwich variance estimator.
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Alternative identification To further reinforce identification, I will also instrument the
price dispersion using measures of market thickness at the property level that do not
directly depend on property characteristics. As demonstrated in various theoretical and
empirical papers, thicker markets tend to exhibit less price dispersion (e.g. Sagi, 2021;
Gavazza, 2011). Extending this concept to housing markets, I create two measures
of market liquidity at the property-transaction level to predict price dispersion. The
proposed instruments are based on the premise that each property may potentially have
its own market. Given the nature of the data I am working with, these measures will pri-
marily capture sellers’ market liquidity. However, we anticipate that general equilibrium
factors will influence both sellers’ and buyers’ market liquidity, resulting in a high de-
gree of correlation between these two measures across different properties and over time.

Following Jiang and Zhang (2022), I build an instrument based on the distance of
the properties’ i characteristics to the mean characteristics of the properties’ sold in the
same city and within the same year. This measure captures the degree of thinness in the
local property market for property i. For instance, there will be less suply and demand
for an old and large apartment in a city predominantly composed of new and small
apartments. The instrument is then built as:

Zm
it = (Xm

it − X̄m
ct)

2, ∀m ∈ {size, age, location}, (9)

where size measures the living area of the apartment in square meters, age is the
building year of the apartment and location is the geographical location of the apartment
given by its latitude and longitude. The instrument for location measures the distance
between properties’ i latitude and longitude and the average latitude and longitude of
all the properties being sold within the city in year t. Given that distances for size, age
and location are all measured in different units, the distances are all standardized to
have mean 0 and standard deviation of 1 for each year t.

In addition, I construct a market thickness measure based directly on the relative
frequency of specific combinations of apartment characteristics. The aim is to capture
how often a particular combination of characteristics appears on the market at a given
point in time. Typical combinations of characteristics will appear more frequently on
the market, indicating a higher supply and demand for those specific characteristics.
To achieve this, I divide the distribution of size, age, and location into eight equally
sized bins for the entire sample. Then, for each year t, I calculate the relative frequency
of each bin by dividing the total number of transacted properties with those specific
characteristics by the total number of transactions in that year:
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Zm
it =

obsit

obst
, ∀m ∈ {size, age, location} (10)

I perform two-stage least squares regressions in which observed idiosyncratic price
dispersion is instrumented by the measures of market liquidity for the different property
characteristics, Zm

i . By introducing the instruments separately for each characteristic,
I am enabling each characteristic’s illiquidity to have a distinct impact on the price
dispersion.

Time-series variation Housing differs from more liquid asset classes in that houses
are transacted very infrequently. Consequently, the transaction price of a house is not
observed every period. To analyze the time-series variation in the measure of predicted
dispersion, I employ a portfolio sorting analysis, where I sort transactions into specific
portfolios each period based on the level of predicted dispersion in the apartment
transactions. I then utilize fixed-effects panel regression methods to estimate the impact
of predicted dispersion on expected returns.

I first sort all transactions into equal-sized portfolios based on their predicted dis-
persion σ̂it every quarter. Given the size of the sample I first construct six equally sized
portfolios. For each one of the p portfolios I estimate total quarterly housing returns as
the sum of capital gains and rental returns:

Total housing returnp,tq =
Pp,tq − Pp,tq−1

Pp,tq−1︸ ︷︷ ︸
Capital Gain

+
Rp,tq(1 − ctq)

Pp,tq−1︸ ︷︷ ︸
Net Rent Return

(11)

where Pp,tq is the hedonic transaction price in portfolio p in quarter tq, Rp,tq is the hedo-
nic rental payment and ctq are utility, maintenance and vacancy costs as a share of the
rent. To estimate the value of the hedonic price and the hedonic rental return, I employ
rolling window time-dummy hedonic methods, which ensure that fluctuations in the re-
turn series are not driven by changes in the sample of transactions sold over time. Based
on the transactions assigned to each portfolios, I first build rolling-window time-dummy
hedonic housing price indices for each portfolio.15 Based on these hedonic indices, I
build quarterly capital gains series. Using the individual rental yields data constructed
based on the Mietspiegel data, I then build rental yield rolling-window time-dummy
time-dummy hedonic indices for each portfolio, which I benchmark to the mean portfo-
lio rental yield in last period to have a time-series of rental yields for each portfolio. For
more details on the construction of the return series please refer to Appendix E. All re-
turns are then transformed into log points, to be more robust to outliers (Bali et al., 2016).

15For an overview of hedonic pricing methods in the context of housing markets, please refer to
Hill (2013).
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To assess the impact of predicted price dispersion on housing returns, I conduct the
following fixed-effects panel regression:

yp,tq = β0 + γûp,tq + BXXp,tq + ηtq + ϵp,tq, (12)

where the dependent variable yp,tq is one of the outcomes of interest (total returns,
excess returns, capital gains, rental yields) for portfolio p in year-quarter tq. ûp,tq is
the average predicted dispersion in portfolio p and Xp,tq is a vector of the average
characteristics of the transactions that compose portfolio p and ηtq are time fixed-effects.

4 Empirical results

In this section, I test the model predictions outlined in Section 2. Using the transac-
tion level data, I exploit within neighborhood-year variation to assess the relationship
between predicted price dispersion and transaction prices, as well as rents. I show a
significant negative effect on transaction prices, which is notably less pronounced in
the case of rents. Subsequently, I proceed to evaluate the impact of predicted price
dispersion on rental yields, capital gains, and total returns. I identify a clear positive
relationship with rental yields, no discernible pattern concerning capital gains, and as a
result, a strong positive correlation with total returns.

Shifting the focus to across-portfolio variation, I demonstrate that portfolios with
higher levels of predicted dispersion significantly outperform others in terms of housing
returns, reinforcing the findings at the property transaction level. Moreover, the analysis
reveals that the premium associated with investing in higher predicted dispersion
portfolios varies over time, increasing during market downturns.

4.1 Transaction level data

Predicted dispersion, transaction prices and rents To better understand the effects of
price uncertainty on net rental values and transaction prices, I conduct 2SLS regressions
as in (7) for each city separately, where the outcome variables are transaction prices
and rents net of utilities and maintenance costs.16 To ensure comparability between the
results of prices and net rents, I initially standardize the variables to have a mean of
zero and a standard deviation of one. Figure 1 illustrates a bin scatter plot based on
the regression results, showing both transaction prices and rents by city. A discernible
pattern emerges across all cities in the sample. While transaction prices are significantly
lower for higher levels of predicted price dispersion, rents largely remain constant across

16I employ the net rents value to ensure that our results are not influenced by variations in utility costs.
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the distribution of price dispersion.

The tables in Appendix F present the 2SLS regression output underlying the binned
scatter plots. They confirm that the coefficient of predicted price dispersion on trans-
action prices is two to three times larger than the one on net rents. Additionally,
the coefficient on net rents is for some cities statistically insignificant, indicating that
apartments with higher predicted price dispersion are not rented out at lower levels of
rent. The effect of predicted price dispersion on transaction prices is not only highly
statistically significant, with all cities displaying coefficients significant at the 1% level,
but it is also economically relevant. Controlling for property size, age, neighborhood,
and the year quarter of sale, the data suggests that moving from the first to the fifth
quintile of predicted price dispersion distribution results in a decrease in sales prices
ranging from 7,000€ (in Cologne) to 10,000€ (in Berlin). In other words, apartments sold
in the same neighborhood and in the same year-quarter with similar characteristics,
on average, will display differences in prices that amount between 4% and 7% of the
average sales price in their respective cities.17

As a robustness test, I replicate the same analysis as described above but limit the
dataset to include only those observations for which both price and rent information is
available. This targeted focus on a subset of observations serves to alleviate potential
biases that may arise from the data matching process discussed in Section 3 of this paper.
The results are presented in Appendix F.2. The regressions conducted on this subset of
observations corroborate the findings obtained from the main sample.

Furthermore, I show that price uncertainty also affects the second moment of the
distribution of transaction prices. Properties characterized by higher price uncertainty
exhibit prices with a greater standard deviation. The detailed results can be found in the
appendix G. This highlights that the observed discount in transaction prices, which I am
quantifying, is due to uncertainty rather than solely from lower demand for this category
of properties. While lower demand may account for the lower transaction prices of these
properties, it does not explain the increased volatility in transaction prices.

Predicted dispersion and returns to housing As illustrated in Figure 1, the effect
of price dispersion on transaction prices is notably stronger than its effect on rental
values. To understand whether this translates into a positive effect of price uncertainty
on rental yields, I perform 2SLS regressions as in Equation (7), using rental yields at the
point of sale as the outcome variable. Based on the regression results, I create binned
scatterplots for each city in my sample, which are displayed in Figure 2. The regression
output for each city can be found in the tables in Appendix H. In all cities, there exists

17These results are obtained by running regression (7) for each city separately and including a categorical
variable for the quintiles of the idiosyncratic price uncertainty distribution.
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Figure 1: Predicted price dispersion, sales prices and net rents
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Note: All panels display bin scatters with 15 bins. Each bin represents the average value of sales prices
and net rents residualized based on regression (7). Both sales prices and rents are standardized to haven
mean zero and standard deviation of one.

a clear positive and significant relationship between predicted dispersion and rental
yields. The effects are not only statistically highly significant but also economically
significant. When comparing sales of apartments within the same neighborhood in the
same year quarter and controlling for size and building age, moving from the lowest to
the highest quintile of predicted dispersion predicts, on average, an increase of between
20 (Dusseldorf) to 34 (Hamburg) basis points in the rental yield. This constitutes a
substantial effect, as it represents between 4% (Dusseldorf) to 8.5% (Hamburg) of the
average rental yield in the respective cities over the time period covered in the sample.
This result also holds for the subsample, in which both prices and rents are observed at
the point of sale as shown in Appendix H.1.

Next, I analyze the relationship between price uncertainty and capital gains, as well
as total returns. The objective is to determine whether the predicted dispersion at the
point of sale can serve as a predictor of future capital gains or total returns. Using the
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detailed information on the precise location of the apartments within the building, I
match transactions of the same apartment over time, allowing me to construct apartment-
level capital gains.18 By utilizing the rental yield values at the point of the first sale,
I subsequently calculate the average yearly total return for each pair of transactions
involving the same apartment. Unlike rental yields, capital gains and total returns are
observed only over the holding period and not for each transaction. Therefore, the unit
of observation is now pairs of apartment sales and re-sales. Since the holding period is
not observed at the time of the first sale, I cannot use the 2SLS framework as in Equation
(7). Instead, I employ a two-step estimator in which I additionally control for the length
of the holding period in the second stage. To be specific, I include a categorical variable
that divides the holding period into 10 equally sized categories. First, I run the same
first-stage regression at the apartment transaction level as outlined in Equation (7). Then,
in the second stage, I regress the outcome variable for each pair of sales (j) on the
predicted dispersion of the first sale, while controlling for property characteristics, time
and neighborhood fixed effects, and the length of the holding period (hpi,j) between the
sale and re-sale.

Stage 1: u2
i,tq = gc(Xi, tq) + BXXi + ηtm + κn,ty + ei,tq (13)

Stage 2: yi,j = γû2
i,tq + BXXi + ηtm + κn,ty + βhpi,j + ϵi,tq, (14)

where Xi is a vector of property characteristics that include size and age, ηtq are
year-quarter fixed effects and κn,ty are year-neighborhood fixed effects. The dependent
variable yit can refer to the capital gains and total returns.

I present the results in the form of binned scatterplots in Figure 2. Predicted price
dispersion at the point of the first sale does not appear to be a reliable predictor of
capital gains. Across all cities, no robust relationship is evident, and the coefficient on
predicted dispersion is consistently statistically insignificant. This finding aligns with
existing evidence regarding idiosyncratic risk in housing markets, which indicates that
idiosyncratic price risk predominantly materializes at the points of sale and re-sale, thus
not being attributable to changes in the house’s fundamentals over time (Giacoletti, 2021;
Sagi, 2021). In other words, we would not anticipate real estate with high predicted
dispersion to appreciate at a different rate than real estate with lower price dispersion.

As for total returns, the pattern differs. In this case, I observe a robust and statistically
significant positive effect of predicted price dispersion on total returns across all cities.
Controlling for property characteristics, time, and neighborhood fixed effects, properties
with higher levels of price uncertainty at the point of the first sale outperform the rest of

18Utilizing the information on the length of the holding period, I proceed to annualize the capital gains.
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the market in terms of future total returns. It is important to note that by incorporating
property characteristics, time, and location fixed effects, the results demonstrate that
these excess returns cannot be attributed to varying exposures to the market portfolio.
The regression output for each city can be found in the tables in Appendix H. Similarly,
for total returns, the effects are not only statistically highly significant but also economi-
cally substantial. When comparing sales of apartments within the same neighborhood in
the same year quarter and controlling for size and building age, moving from the lowest
to the highest quintile of predicted dispersion predicts, on average, an increase ranging
from 40 (Berlin) to 57 basis points (Cologne) in future total returns. This represents
a significant impact, accounting for approximately 4% (Berlin) to 6% (Cologne) of the
average total return in the respective cities over the time period covered in the sample.
Please note that in the case of Hamburg, the number of observations is very limited due
to the absence of key information necessary for the identification of repeat-sales.19 Given
this limited dataset, it is not surprising that the effects are not statistically significant.
Nevertheless, they consistently exhibit the expected direction.

Predicted dispersion and rental yields for multi-family housing The model presented
in Section 2 characterizes the optimal bid for a housing investor. Typically, large real
estate investors hold multi-family houses in their portfolios rather than individual
apartments. Furthermore, assuming risk-averse investors who consider resale risk at the
time of purchase is even more appropriate for characterizing investment decisions in the
multi-family housing market. This is because, in this market, average transaction prices
are very high, representing a significant portion of investors’ total portfolios. The dataset,
constructed by Amaral, Dohmen, Schularick, et al. (2023), also includes information
on transactions involving multi-family housing. In this section, I replicate the analysis
conducted in the previous sections, but this time utilizing data on multi-family house
transactions. To account for specific characteristics of the multi-family housing market, I
incorporate additional control variables when measuring price dispersion, such as the
building’s lot size or the percentage of commercial use of the property.20 I then employ
the same 2SLS approach as in (7) to investigate the impact of predicted dispersion on
rental yields. For multi-family housing, data on rental income after accounting for
maintenance and utilities costs at the point of sale is available for a significant portion
of the transactions for the cities of Berlin and Hamburg.21 Therefore, in this analysis, I
only consider observations for which I simultaneously have data on transaction prices

19For more details, please refer to Appendix C.3.
20Please note that I exclude all buildings in which commercial properties occupy more than 20% of the

usable area of the building.
21Unfortunately, in the case of Cologne most of the transactions of multi-family housing have missing

information about the size of the houses. For Duesseldorf, only information on the gross rental yields
(before excluding maintenance costs) is available, as such, not allowing for a clear comparison across
transactions.
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Figure 2: Biscatter of housing returns on predicted price dispersion by city
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Note: The first column displays a binscatter of rental yields on predicted price dispersion based on the 2SLS
regression output of (7). Here the unit of observation are transactions. The second and third columns displays a
binscatter of capital gains and total returns on the predicted price dispersion at the point of the first sale based on the
two-step regression estimator (13). Here the units of observation are pairs of sale and re-sale of the same apartment.

and rental incomes.

The results are presented in Figure 3. Similar to the findings for apartments, a
positive and robust relationship between predicted dispersion and rental yields at the
transaction-house level is evident. After accounting for property characteristics, time and
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location fixed effects, it becomes clear that multi-family houses with higher predicted
averages tend to yield higher rental returns on average. Once again, the results exhibit
not only statistical significance but also considerable economic relevance. Transitioning
from the lowest quintile to the top quintile of predicted price dispersion in a given year
and neighborhood, while controlling for property characteristics, predicts a rental yield
increase of 65 basis points in Berlin and 40 basis points in Hamburg. These increases
represent 7% and 6% of the average rental yields observed over the sample period in
Berlin and Hamburg, respectively. For detailed regression output tables, please refer to
Appendix H.2.

To further test the robustness of these findings, I conducted the same analysis
exclusively on multi-family houses without any commercial properties. Commercial
properties are often more challenging to value. Importantly, the results remain consistent,
indicating that even for 100% residential multi-family housing, rental yields increase
with predicted dispersion.

Figure 3: Rental yields & predicted dispersion for multi-family housing by city
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Note: The binned scatters are based on regression (7) with ratio of net rental income to transaction price of multi-
family houses at the point of sale as the outcome variable. Panel a) displays the results for Berlin for the period
between 1970 and 2022 and Panel b) displays the results for Hamburg for the period between 1991 and 2022. The
regression output tables can be found in Appendix H.2.

4.2 Portfolio sorting analysis

Properties are traded very infrequently, which means that a time series for the value of
a specific property is not observed, and the variation that I can analyze at the transaction
level is cross-sectional. Using the portfolio price and return time-series constructed in
Section 4.2, I can, however, also analyze the time-series variation. Since these portfolios
were built based on hedonic methods that control for property characteristics, the
differences in performance across the portfolios arise solely due to their differences
in value uncertainty. From this perspective, the hedonic portfolio sorting analysis can
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be interpreted as a multi-sort portfolio analysis, where researchers aim to control for
specific asset characteristics to isolate the effects of the risk factor (Bali et al., 2016). In
this section, I first demonstrate that portfolios containing properties with higher levels
of uncertainty outperform the rest of the market. Decomposing the total returns, I then
illustrate that the return differences across portfolios stem from variations in rental
returns and not from capital gains. This corroborates the results from the transaction-
level analysis. Finally, I also establish that exposure to the market portfolio remains
constant across the portfolios, and higher value uncertainty portfolios exhibit higher
alphas.

In Figure 4, I plot the total nominal returns by portfolio for each city over the
entire sample period, accompanied by the 95% confidence intervals. The portfolios
are sorted based on the level of predicted dispersion associated with the transaction
of the properties within them. Portfolio 1 consists of transactions of properties with
the lowest levels of predicted dispersion, whereas portfolio 6 comprises transactions
of properties with the highest levels of predicted dispersion. All three cities exhibit
a consistent pattern: total returns consistently rise with increasing value uncertainty,
demonstrating a nearly monotonic relationship.

To assess the magnitude of the return differences depicted in Figure 4, I conduct
hypothesis tests to determine if these differences are statistically significant. Following
the best practices in the asset-pricing literature, I test the differences in log excess returns.
I build the excess returns by subtracting the returns on short-term German government
bonds. Additionally, I perform a decomposition of the return differences into separate
components, namely capital gains and rental return differences. The results can be
found in Table 3, where I provide the average log excess return difference between
portfolio 6 and portfolio 1 as well as the difference between portfolio 6 and the average
of the rest of the portfolios for the all cities separately.

For all cities, investing in portfolio 6 provides a statistically significantly higher
return than investing in portfolio 1. For example, for Cologne investing in the portfolio
with the highest value uncertainty provides a premium of 149 basis points per quarter
over investing the portfolio with the lowest value uncertainty. Not only is this premium
statistically significant, but it also economically very large. The most documented
investment risk strategies in the stock market literature, such as the small-minus-big,
high-minus-low or momentum strategies yield a return premium in the range of 100 to
150 basis points per quarter (e.g. Ehsani and Linnainmaa, 2022; Fama and French, 2015).
The differences in returns between portfolio 6 and an average of the rest of the portfolios
is also statistically significant, although not as large as the difference to portfolio 1.

The second and the third column also show the differences in capital gains and rental
returns. It becomes evident that most of the return differences come from the differences
in rental returns and not from the differences in capital gains. This result is consistent
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Figure 4: Log total nominal returns & predicted dispersion by city
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(b) Berlin
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(c) Hamburg
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(d) Duesseldorf
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Note: The Figure shows the total nominal returns on six equally-sized portfolios built based on predicted disperion
quantiles. The returns to the portfolios are constructed using hedonic regressions controlling for property character-
istics. For more details please refer to section 3.2

with the predictions of the model and the transaction-level results, that also indicated
that rental returns and not capital gains increase with value uncertainty.

Exposure to systematic risk Although the differences in total returns are quite large,
this does not necessarily mean that varying levels of value uncertainty are driving
the return differences. It could be the case that the different portfolios have different
exposures to systematic risk in the market. In order to test this hypothesis, I run the
following regression:

ln(rpt) = αp + βpln(rmt) + ϵpt, (15)

where ln(rpt) is the log total excess return for portfolio p, which is constructed by
subtracting the risk-free return to the nominal total return of each portfolio, and ln(rmt)

is the total excess return for the city of Cologne. In Figure 5 I plot the both the α

coefficient for each portfolio p, as well as the β coefficient. While the show the exact

25



Table 3: Portfolio return differences in log points by city

Cologne

Portfolio Excess Returns Capital Gains Rent Returns N
P6 vs P1 1.55*** (0.29) -0.00 (0.27) 1.39*** (0.07) 264

P6 vs rest 1.28*** (0.27) -0.03 (0.25) 1.15** (0.56) 792

Berlin

Portfolio Excess Returns Capital Gains Rent Returns N
P6 vs P1 1.06** (0.44) 0.45 (0.44) 0.61*** (0.14) 214

P6 vs rest 0.84** (0.35) 0.36 (0.34) 0.47 (0.43) 642

Hamburg

Portfolio Excess Returns Capital Gains Rent Returns N
P6 vs P1 1.47*** (0.47) 0.32 (0.40) 1.14*** (0.20) 166

P6 vs rest 0.84*** (0.32) 0.33*** (0.03) 0.51* (0.29) 498

Duesseldorf

Portfolio Excess Returns Capital Gains Rent Returns N
P5 vs P1 0.70*** (0.26) 0.04 (0.22) 0.64*** (0.15) 306

P5 vs rest 0.45** (0.22) 0.08 (0.17) 0.37 (0.79) 765

Note: Differences are measured as coefficients in a random effects panel regression of the dependent variable (log
capital gain, log rental yield and log total housing return respectively) on a P6 dummy and year fixed effects.
Driscoll-Kraay standard errors (in parenthesis). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

same pattern as the total nominal returns, the do not show significant differences across
the portfolios. This indicates that the observed differences in total nominal returns in
?? are not being driven by differential exposure to the market portfolio returns. To the
extent that the market portfolio returns represent systematic, non-diversifiable, risk, this
indicates that the main results are not driven by different exposures to systematic risk.

4.3 Robustness analysis

In this section, I present the robustness analysis conducted to ensure that alternative
factors are not influencing the primary results of the paper. Here, I specifically emphasize
demonstrating the robustness of the findings that confirm the three main predictions of
the model about properties with higher value uncertainty: i) they trade, on average, for
lower prices, ii) they yield, on average, higher rental yields and iii) they do not realize,
on average, higher capital gains but have higher total returns.

Observed rental income and price at transaction level The main results, both at the
transaction-level and in the portfolio-sorting analysis, are based on a matched sample of
transactions where I align transaction prices with net rental income from the Mietspiegel,
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Figure 5: Total returns controlling for systematic risk exposure, Cologne 1989-2022
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Note: The six equally-sized portfolios are built on the predicted dispersion. Standard errors are adjusted for
time-series autocorrelation using Newey-West with 6 quarter lags.

as explained in the data section. This approach introduces two potential sources of
bias. Firstly, it’s not certain whether all the properties I match are actually being rented,
raising questions about the accuracy of predicting the rental income these properties
would generate if they were indeed in the rental market. Secondly, the matching process
relies on the same set of characteristics used to predict price dispersion. If I do not find
an effect when regressing rental values on predicted price dispersion, it could potentially
invalidate the rest of my results.

To address these concerns, I replicate all my analyses using only the sample of
properties for which I simultaneously observe rental income and transaction prices. I
conduct this analysis for both apartments and multi-family housing. This approach
addresses both concerns, as the presence of information on rental income guarantees
that the property is indeed being rented out and provides the exact level of rental
income, eliminating the need for estimation. As I demonstrate in Appendices F.2 and
H.1, all results hold when using the samples for which both rental income and prices are
observed, with the results being particularly robust in the case of multi-family housing.

All sales As mentioned in Section 3, the inclusion of apartment fixed effects in my
baseline regression could pose two problems. Firstly, considering that properties are
rarely transacted during the sample period, the limited number of observations per fixed
effect has the potential to introduce bias to the coefficients and consequently impact
the estimated residuals in my baseline regression (1). Secondly, properties that transact
more than once might not be representative of the universe of property transactions
and have special characteristics that might bias the results (Haan and Diewert, 2011). In
order to assess whether these issues might be influencing my results, I conducted a new
analysis where I excluded the apartment fixed effects from the baseline regression and
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using the exact same sample, I run the following regression:

ln(pi,tq) = ηtm + κn,tq + fc(xi, ty) + ui,tq, (16)

which is equal to the regression (1), but excludes the property fixed effects. Compared
to my baseline results, the regression without apartment fixed-effects yields significantly
greater dispersion in the residuals. However, the residuals from the specification without
apartment fixed-effects exhibit a strong positive correlation with the residuals from the
specification with apartment fixed-effects. Therefore, it is unsurprising that I am able
to replicate the main results. I present the detailed results in Appendix I.1. Summary
statistics for all sales by city can be found in Table 7 in the Appendix.

Housing renovations and price dispersion The model specification in equation (1)
does not take into account the potential impact of renovations on the value of apartments.
Without explicitly controlling for renovations, it is possible that the residuals are picking
up this effect. Therefore, the model may not be capturing a measure of idiosyncratic
price deviation, but rather a measure of the enhancing value of renovations. Additionally,
apartments continuously depreciate, which counteracts the effects of renovation. To
determine whether these two effects are a significant source of measurement error in my
analysis, I adapt (1) by including building-time fixed effects. Since the largest renovation
works are typically done simultaneously for all apartments within a building, this
approach should already control for the most significant renovation works. To estimate
the idiosyncratic price deviations, I use the following regression:

ln(Pi,tq) = bi,ty + ηtm + κn,tq + f c(xi, ty) + ui,tq, (17)

where bi,ty is a building-year fixed effect that captures building specific characteristics
that also change over time. Given the large number of buildings for which there are
several apartment transactions every year, I am able to estimate the coefficients precisely.
As I show in Appendix I.3 controlling for building renovations does not change my
results.

Adjusting for heterogeneity in holding periods Equation (1) does not explicitly take
into account the relation between the variance of the residuals and holding period.
Giacoletti (2021) shows that the variance of the residuals increases slightly with holding
period. Additionally, the properties, which are sold more often will have smaller
residuals by construction, since the apartment fixed-effects in equation (1) will be better
estimated. To take these issues into account, I add a second step to the estimation of
the transaction level price dispersion, in which I explicitly regress the squared residuals
from equation (1) on a smooth function of the holding period, hpi, interacted with the
number of sales, salesi:
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u2
i,tq = gc(salesi, hpi) + e2

i,tq. (18)

Then I take e2
i,t as my new measure of the price dispersion. I then follow the same

steps as described in Section 3 of the paper and analyse the relation between prices and
returns and the new measure of predicted price dispersion that explicitly takes into
account the relation between the squared residuals from regression (1) and the length of
holding period as well as the number of times the property was transacted. As shown
in Appendix I.4, all the main results hold.

Instrumenting price uncertainty In my baseline analysis, I regress realized variance of
the pricing errors on property characteristics to generate a prediction of price uncertainty.
This process inherently creates a correlation between the measure of ex-ante price
uncertainty and the property characteristics. This correlation could potentially raise
concerns about the main results of the paper, as I might be capturing a mechanical effect
related to a preference for specific types of characteristics in transaction prices.

To address this issue, I employ direct measures of sellers’ market thickness to predict
price uncertainty. The first measure is based on the Euclidean distance between property
characteristics and the mean characteristic in the market. The second measure relies
on the relative frequency of specific characteristics in the market. Detailed information
on the construction of these measures can be found in Section 4.2. As demonstrated
in Appendix I.2, using these measures of market thickness to predict price dispersion
does not alter the main results and, in some cases, even reinforces them. These results
are also confirmed in the following section, where I show a strong correlation between
measures of market size and liquidity and value uncertainty at the transaction property
level.

Bargaining power and transaction prices One of the predictions of my bargaining
model in section 5 is that a higher bargaining power of the buyer could explain my em-
pirical results. Intuitively, if properties with higher price uncertainty have thinner buyer
markets, then we would expect buyers to have higher bargaining power, consequently
driving down the prices of these properties. To test this hypothesis, I approximate the
number of potential buyers per house by using click data from online advertisements.
Specifically, I construct two measures of buyer market thickness using information on
the number of clicks per ad and the number of times the seller is contacted per ad.
While clicking on an ad does not necessarily indicate an intent to buy and is thus a
noisy proxy for potential demand, contacting the seller of the property involves writing
a text and clearly demonstrates an interest in acquiring the property. I then regress price
uncertainty on these two proxies of buyer market thickness at the property-transaction
level. Additionally, I include property characteristics, location, and time fixed effects
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to ensure a comparison of similar properties. The results for the city of Cologne are
displayed in Figure 6. There is no significant relationship between price uncertainty
and buyer market thickness for both proxies. Indeed, the data does not indicate that
properties with higher price uncertainty are transacted in thinner buyer markets.

Figure 6: Price uncertainty and buyers’ bargaining power
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Panel (a): Binscatter showing the relation between price uncertainty and measures of buyers’ bargaining power. The output is based on regressions controlling for time and location fixed effects,
property characteristics and time on the market. The data is for the city of Cologne and covers the period between 2008 and 2018. The source is Immoscout.

Additionally, bargaining power is not only affected by number of potential buyers,
but also by the outside options of the buyers. As I show in Section 6, properties with
higher price uncertainty have a lower number of comparable properties on the market.
This means that buyers wanting to buy these properties will typically face a lower
number of outside options in the market. All else constant, this increases the bargaining
power of sellers, which can then raise prices even more. And, as such, this would go
against ma empirical findings of a pricing discount for properties with higher price
uncertainty.

Overall, I do not find evidence that higher buyers’ bargaining power is driving
my empirical results. Theoretically, it is also not clear that buyers will have a higher
bargaining power for properties with higher price uncertainty, as the number of outside
options is typically smaller for this type of properties.

5 Theoretical Framework

Houses are highly heterogeneous goods, and their characteristics are valued differ-
ently by potential buyers. For instance, larger houses tend to be more appealing to
larger households. Consequently, houses located in close proximity to one another may
be traded in markets characterized by distinct types and quantities of potential buyers,
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exposing them to markets with varying sizes and thicknesses. Intuitively the size and the
thickness of the markets will affect the quality of the matching process between sellers
and buyers. Thinner markets typically result in less efficient matching between sellers
and buyers, thereby generating greater uncertainty surrounding transaction prices.22

Additionally, the attributes that render a house attractive for purchase also influence
its demand in the rental market. This, in turn, impacts the uncertainty surrounding
the rental value at which the property can be rented out. In this section, I develop a
theoretical framework to characterise the optimal bid for a risk-averse investor who
faces uncertainty regarding both the rental and resale values of the property.

Setup This is a model with three periods, with one seller and one financially uncon-
strained investor, who wants to buy a house to rent it out. In the first period, the seller
puts the house for sale and enters a Nash bargaining process with the investor. The
bargaining power of the investor is given by α. The α parameter can be understood as
reflecting the buyers’ market thickness for the specific house h.23 After having bought
the house in the first period, the investor rents it out in the second period. The rent is
exogenous and random. In the third and final period, the investor sells the house for
a random price. I assume that, in the first period, the investor knows the reservation
value of the seller, PVS(h), and, as such, will not bid below it. The bargaining problem
of the first period can then be written as:

max
VB,VS

Vα
B V1−α

S (19)

s.t. V = VB + VS (20)

V = PVB(h)− PVS(h) (21)

α ∈ (0, 1) (22)

where the first constraint is the standard constraint from a Nash bargaining problem
that splits the bargaining surplus among the seller and the buyer. The second constraint
tells us that the value that will be split between buyer and seller equals the difference
between the private valuation of house h by the buyer, PVB, and the reservation value of
the seller, PVS. In other words, the final transaction price will be between the private
valuation of the buyer and the reservation value of the seller and will be determined by
the relative bargaining power of each party. For simplification, I assume that housing
is the only asset in the economy and, as such, all income generated by housing will
be consumed. The private value of the investor of house h is the discounted value of

22This is because, all else being equal, the probability of a match occurring between a seller and a buyer
who value the house equally is lower in thinner markets (e.g Han and Strange, 2015).

23I take the relation between bargaining power and number of buyers as exogenous, however it can be
micro-founded in a setting of sequential bargaining as demonstrated in Rubinstein and Wolinsky (1985).
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renting out the house in period 2 for R2 and selling it in period 3 for the expected price
P3(h):

PVB = βE1[u2(R2(h)] + β2E1[u3(P3(h))], (23)

where P3 and R2 are log-normally distributed with means µP and µR and variances
σ2

P and σ2
R, respectively. β ∈ (0, 1) is the discount factor. The mean µP can be thought

of as the expected market value of the property, while the variance σ2
P measures the

house-specific price deviation from its expected market value. The same logic holds for
the rent. This model describes transactions for one specific house on the market. When
the investor rents out the house and resells it, they face a larger market and receive a
random rent and price.24 Furthermore, I assume that the risk-averse buyer has CRRA
utility.25

Solution To solve the maximization problem, I substitute the Nash bargaining con-
straint into the problem:

max
VS

(V − VS)
αV1−α

S (24)

s.t. V = PVB(h)− PVS(h) (25)

α ∈ (0, 1). (26)

Deriving the first-order condition and solving for V, we get:

V =
1

(1 − α)
VS. (27)

Plugging in the constraint and using the definition of the private value of the investor
yields:

1
(1 − α)

VS = βE1[u2(R2(h))] + β2E1[u3(P3(h))]− PVS(h). (28)

Since the rent in period 2 and the price in period 3 are log-normally distributed, we
have that:

E1[ln(P3)] = ln(E1[P3])−
1
2

Var1[ln(P3)] (29)

E1[ln(R2)] = ln(E1[R2])−
1
2

Var1[ln(R2)] (30)

Given that the buyer knows the reservation value of the seller, the optimal bid of
the buyer in the first period will equal the bargaining surplus of the seller, B∗ = VS. As

24The randomness of both sale and rent prices can be justified by extensive empirical evidence demon-
strating the substantial unpredictability of prices in housing markets (Kotova and Zhang, 2021; Giaco-
letti, 2021).

25For simplification, I assume log utility.
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such, assuming the buyer has log utility, we have the following expression for optimal
bid by the buyer in period 1:

B∗ = VS = (1 − α)

[
β(ln(µR)−

1
2

σ2
R) + β2(ln(µP)−

1
2

σ2
P)− PVS(h)

]
(31)

Since the optimal bid of the buyer will be at or above the reservation value of the
seller, the bid will be accepted. I do not explicitly model the sellers’ problem, however,
ss demonstrated in DeGroot (2005) and under the assumption that the seller knows
the distribution of buyers, it is optimal for sellers to accept the first bid above their
reservation value.

5.1 Comparative statics

In this subsection, I explore the comparative statics of the models’ equilibrium
predictions, primarily based on equation (31). In doing so, I investigate the effects of
price and rental dispersion, as measured by the idiosyncratic variances, on transaction
prices and returns to housing. These predictions are then tested empirically in the
following sections of the paper.

P1. Higher idiosyncratic price variance leads to lower transaction prices For prop-
erties with a higher expected idiosyncratic price variance, the optimal bid, and conse-
quently, the transaction price will be lower. All else being equal, a risk-averse buyer will
choose to bid a lower amount for a property that has a more uncertain resale value.26

Therefore, the model predicts that these properties should transact at a lower price.
∂B∗

∂σ2
p
= −(1 − α)

1
2

β2 < 0 (32)

P2. Higher idiosyncratic price variance leads to higher rental yields Using equation
(31) I write the ratio of the expected rental income in period 2 to the transaction price
in period 1 as a function of the price idiosyncratic variance. Then taking the derivative
with respect to the idiosyncratic price variance I get the following equation:

∂
E1(R2)

B∗

∂σ2
p

=
(1 − α)1

2 β2 ∗ E1(R2)

(1 − α)2
[

β(ln(µR)− 1
2 σ2

R) + β2(ln(µP)− 1
2 σ2

P)− PVS(h)
]2 > 0 (33)

from which it becomes evident that the ratio of rents to prices, known as rental yield,
increases with the idiosyncratic price variance. In other words, an investor will only be
willing to offer a lower value for a given rental cash flow if they anticipate higher price
uncertainty, which consequently mechanically increases the rental yield.

26Please note that even if the buyer does sell the house in the future, the idiosyncratic component might
still impact their optimal bid through the use of the house as a collateral.
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Nevertheless, if price uncertainty arises as a result of trading frictions in the housing
market as shown in Sagi (2021), then we expect properties with higher price uncertainty
to be traded in small and illiquid markets. This would mean that there are less potential
renters for the property and, as such, the landlord would have less bargaining power.
Other things constant, this would lead to a lower rental income, putting downward
pressure on the rental yield. Which effect is stronger is not clear ex-ante and is, therefore,
an empirical question.

P3. Higher idiosyncratic price variance does not result in excess capital gains but does
lead to higher total returns Due to the randomness of the resale price in the third
period, this model does not make a prediction about the relation between capital gains
and the idiosyncratic price variance. Nevertheless, the theoretical and empirical evidence
on idiosyncratic price risk in housing markets shows that this risk primarily materializes
at the point of sale and resale (Sagi, 2021; Giacoletti, 2021). Consequently, it arises
primarily due to trading frictions in the housing market. In other words, idiosyncratic
price variance is not driven by changes in the fundamental characteristics of the house
and, thus, should not, on average, impact capital gains.27 In conclusion, if properties
with higher idiosyncratic price variance are expected to yield higher rental yields but no
additional capital gains, then these properties should offer higher total returns.

Note that if a buyer owns multiple houses, they might be able to diversify away
idiosyncratic price deviations. If this is the case, then in a standard asset-pricing model
with complete markets, the idiosyncratic variance should not influence the market’s
stochastic discount factor. In Appendix B, I demonstrate how the assumption of in-
complete markets can lead to a market stochastic discount factor that also incorporates
idiosyncratic price variance. This provides a theoretical framework for idiosyncratic risk
being priced in housing markets.

In this section, I have provided a stylised theoretical framework that predicts the
empirical results about transactions prices and returns I showed in previous sections. In
the next section, I will empirically test the assumptions of this model.

6 Market size, liquidity and value uncertainty

Drawing inspiration from theoretical frameworks that establish a relationship be-
tween market size and price dispersion in OTC markets (Gavazza, 2011), in this section,
I empirically examine the connection between price uncertainty, market size, and market
liquidity at the transaction property level. Given that houses are extremely hetero-
geneous goods and, consequently, exposed to highly diverse markets, it is crucial to

27I provide a more detailed and extensive summary of this result in Appendix A.
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investigate the relationship between price uncertainty and market size or liquidity at
the transaction property level. Aggregation at higher levels might potentially obscure
significant variations in the data.

6.1 Value uncertainty and market size

To measure market size at the property level, I rely on the literature on atypical
properties (e.g. Bourassa et al., 2009; Haurin, 1988), and build an atypicality index for
each transaction i based on the distance between the properties’ characteristics and the
average property in the neighborhood:

ATYPi = ∑
n
|exp(β̂nXn)− exp(β̂nXn)|,

where β̂n represent the shadow price of characteristic n estimated in a log-linear
hedonic regression using all the transactions for the respective city. Xn is the average of
characteristic n for all the transactions in the respective neighborhood. The ATYPi then
measures the relative distance of the properties’ characteristics to the mean, or typical,
property in the neighborhood weighted by the shadow price of each characteristic. The
higher the value of ATYPi the more atypical a property is with respect to the other
properties in the neighborhood. As such, the atypicality index is a direct measure of
the sellers’ market size of the property. Through general equilibrium effects, we expect
the demand for these type of properties to also be relatively low, altogether making the
markets for atypical properties relatively small. In Figure 7, I plot a scattered bin plot
of predicted dispersion on the atypicality index. For all cities in the sample there is a
clear positive relation: properties with higher levels of idiosyncratic risk are also more
atypical. In other words, properties transacted in smaller markets display larger levels
of value uncertainty.

The statistical significance of this relation is confirmed by the regression results in
the tables in Appendix ??, which show that the relation between idiosyncratic risk and
the atypicality index is positive and highly significant also when neighborhood and time
fixed effects.

6.2 Value uncertainty and asset liquidity

Using the data set with matched transactions and advertisements I build two mea-
sures of asset liquidity at the transaction property level. Firstly, I created a measure of
time on the market, defined as the number of weeks between the day the ad was posted
and the day it was taken offline:

TOMit =
Number o f days advertised

7
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Figure 7: Value uncertainty and atypicality of the property
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Note: The figure dispalys binscatters of predicted price dispersion on atypicality index at the transaction property
level for all cities in the sample. In all binscatters the underlying regressions include year-quarter and neighborhood
fixed-effects as well as controls for property characteristics.

Secondly, I constructed a measure of the spread between the asking price and the
transaction price as:

Spreadit = 100 · (Sales priceit − Asking priceit)

Asking priceit

To gain insight into the relation between value uncertainty and the expected duration
a property stays on the market, it is essential to consider whether the listed property
ultimately sells or not. In the literature on housing markets, hazard models have been
employed to analyze the expected time a property spends on the market (Haurin, 1988;
Han and Strange, 2015). Following the literature, I assume the following hazard function
for time on the market:

h(tom) = h0(tom) ∗ exp[γσ̂ + BXX + ηtq + κn], (34)

where h0(tom) is the baseline hazard rate and its specific shape will depend on
the assumption about the distribution of the error term. The hazard rate h(tom) then
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denotes the probability of a property being sold at time t, conditional on the seller
listing the property to that point in time, and subject to the predicted dispersion, σ̂, the
property characteristics, X and the year-quarter, ηtq, and neighborhood, κn fixed effects.
I estimated the hazard rate using various error term distributions and presented the
results in Table 4. The first row of the table displays the effect of predicted dispersion on
the hazard rate of time on the market, given by its hazard ratio. Across all specifications,
it becomes evident that increased value uncertainty, as quantified by predicted price
dispersion, is associated with higher expected time on the market. A one unit increase
in value uncertainty is associated with more than doubling the probability that the
property does not get sold.

Table 4: Expected time on the market and value uncertainty, Hamburg (2012-2022)

Exponential Weibull Cox

Price uncertainty 2.58
∗∗

2.61
∗∗∗

2.66
∗∗∗

(0.994) (0.905) (0.917)

Year-quarter FEs Yes Yes Yes

Neighborhood FEs Yes Yes Yes

Property characteristics Yes Yes Yes
N 24497 24497 24497

The Table reports the results of three different duration models of time on the market. The first row displays the
estimated hazard ratio of predicted dispersion. Standard errors are shown in parenthesis. ∗ : p < 0.1; ∗∗ : p <
0.05; ∗ ∗ ∗ : p < 0.01.

Having established that properties with greater predicted dispersion tend to, on
average, spend a longer time on the market, the subsequent analysis narrows down
to the subset of properties that have been successfully sold. In this context, I examine
whether the transaction prices for these properties significantly differ from their initial
asking prices. I regress the spread between the asking price and the transaction price on
predicted price dispersion while controlling for property characteristics, neighborhood
factors, and year-quarter fixed effects. The outcomes of this analysis are illustrated in
Figure 8, and the visual representation makes it evident that properties characterized
by higher value uncertainty generally sell at prices considerably lower than their initial
asking prices. This finding aligns with Sagi (2021), who demonstrates that buyer-seller
heterogeneity in private values plays a central role in explaining the idiosyncratic price
dispersion.

Additionally, the trade-off between time on the market and asking price discount
becomes greater with value uncertainty. It is a well-known trade-off that, to sell a house
quickly, a seller has to accept a cut to the original asking price. I tested the effect of
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Figure 8: Predicted dispersion and asset level liquidity, Cologne (2012-2022)
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(b) Cologne - Asking price discount
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Note: These figures display a binned scatter plot, based on a regression of spread on predicted dispersion, property
characteristics and year-quarter and neighborhood fixed effects. The data shown is for the city of Cologne and
Hamburg for the period between 2012 and 2022.

value uncertainty on this trade-off by running a regression of asking price discount on
time on the market at the transaction level, where I also included an interaction term
between time on the market and predicted dispersion. The results can be found in Table
5. The sign of the interaction coefficient is negative, meaning that for a given level of
time on the market, a seller will need to accept a larger cut to the asking price when
selling a property with more price uncertainty.
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Table 5: Trade-off TOM and price discount, Cologne (2012-2022)

Price Discount Price Discount Price Discount
TOM -0.03

∗∗∗
0.04 0.04

(0.007) (0.026) (0.025)

TOM × Idiosyncratic risk -0.64
∗∗ -0.63

∗∗∗

(0.198) (0.181)

Idiosyncratic risk -96.90
∗∗∗ -87.49

∗∗∗

(15.957) (14.083)

Year FEs Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes

Property characteristics No No Yes
N 12830 12800 12800

R2
0.02 0.05 0.06

Standard errors are clustered at the neighborhood-level (Stadtbezirk). Singletons were dropped. ∗ : p < 0.1; ∗∗ :
p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 6: Trade-off TOM and price discount, Hamburg (2012-2022)

Price Discount Price Discount Price Discount
TOM 0.01 0.08

∗∗∗
0.06

∗∗∗

(0.009) (0.019) (0.019)

TOM × Idiosyncratic risk -0.56
∗∗∗ -0.54

∗∗∗

(0.155) (0.160)

Idiosyncratic risk -35.95
∗∗∗ -20.39

∗∗∗

(5.290) (4.830)

Year FEs Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes

Property characteristics No No Yes
N 22861 22513 22513

R2
0.02 0.03 0.04

Standard errors are clustered at the neighborhood-level (Stadtbezirk). Singletons were dropped. ∗ : p < 0.1; ∗∗ :
p < 0.05; ∗ ∗ ∗ : p < 0.01.

39



7 Conclusion

Despite the extensive literature on the microstructure of housing markets, which has
emphasized the significance of housing liquidity for patterns in housing prices, relatively
little attention has been given to the interplay between liquidity in the rental and sales
markets and its impact on transaction prices and returns. I begin by constructing a
bargaining model involving a risk-averse investor who encounters uncertainty regarding
future rental income and the property’s value. The model predicts that properties with
higher value uncertainty will be traded at lower prices and yield higher returns. To test
the model’s predictions, I utilize a novel transaction-level dataset encompassing all real
estate transactions in major German cities over the past four decades. In each of the
four cities in my sample, I find robust evidence that supports all three predictions of
the model. In the context of the German housing markets, higher returns on properties
with greater value uncertainty are plausible, given the larger size and liquidity of rental
markets compared to sales markets.

While Germany has grappled with persistently low homeownership rates for decades,
this paper sheds light on how the substantial size and liquidity of the rental market
may impede policies aimed at increasing homeownership rates, as they provide higher
returns for housing investments, making buy-to-let investments highly attractive.
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Appendix

A Idiosyncratic Price Dispersion in Housing Markets

A broad literature, which started with Case and Shiller (1988), has argued that
the idiosyncratic component of prices is the largest determinant of capital gains for
individual houses. Idiosyncratic house price risk is defined as the property-level capital
gains not explained by local market fluctuations and common house or transaction
characteristics. It can thus be estimated as the standard deviation of the residuals of a
regression of house price appreciation on a set of controls:

∆ph
t+1 = ∆vt+1 + BXh + σl,residual ρh

t+1 (35)

where ∆vl,t represents the average growth of local house prices, Xh is a vector of prop-
erty and transaction-specific characteristics that might impact the price and εh

t can be
interpreted as a transaction-specific shock. Using very rich transaction-level data, recent
work has demonstrated empirically that most of the variation in house prices is indeed
idiosyncratic (Giacoletti, 2021; Sagi, 2021). In addition to finding a large amount of
idiosyncratic volatility in house prices, these papers also show that the idiosyncratic
component of volatility almost does not scale with the holding period. Instead, idiosyn-
cratic volatility seems to stem mostly from the sale and re-sale of the property. This
suggests that transaction frictions might explain most of the idiosyncratic risk in housing.

Sagi (2021) builds and calibrates a heterogeneous agents search model of the housing
market, in which idiosyncratic volatility in house prices arises from limited trading
opportunities and heterogeneity in valuations. In the model dispersion in the relative
valuations of randomly matched counterparties and limited trading opportunities leads
to uncertainty about the matching process and, therefore, to transaction risk. Illiquidity
can thus amplify the house price risk. Sagi shows that one can write the log total return
on a property for a specific period as the sum of a market-wide price shock µm, a shock
to the value of the housing services ηinc and a transaction-specific shock ρtrans:

∆rh
t+1 = σmµm,t+1 + σincηinc,t+1 + σtransρ

h
trans,t+1, (36)

where the housing services shock component can be decomposed into a market and
an idiosyncratic component: σincηinc = σinc,mηinc,m + σinc,idioηinc,idio. The idiosyncratic
component of the housing services shock together with the transaction shock build
the property-level risk. In particular, the transaction shock maps one-to-one to the
residual shock in equation 36. Sagi is also able to show empirically that the majority
of property-level risk arises from the transaction risk and not from the idiosyncratic
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housing services shock component. As such, I will focus on this transaction shock as a
source of risk premium in the theoretical analysis that follows.

B Idiosyncratic risk in asset pricing

Sagi (2021) constructs a search model of the housing market, demonstrating that
heterogeneity in the private valuations of sellers and buyers, coupled with market
illiquidity, play a crucial role in explaining the deviations of individual real estate
prices from their expected market values. When these deviations persistently occur for
specific properties, meaning a property consistently transacts at a price significantly
different from its expected market value, it becomes a source of risk for potential buyers.
Consequently, buyers may consider this source of risk when determining the value they
are willing to pay for a specific house. In other words, this idiosyncratic risk might be
priced into housing markets.

However, in most asset-pricing theories, idiosyncratic risk is not priced in equilibrium,
as it can be diversified away (Cochrane, 2009). Consequently, existing pricing models
of the housing market often rely on this framework, concentrating solely on common
risk factors (Piazzesi et al., 2007; Case, Cotter, et al., 2011). However, in an incomplete
markets setting, households may not be able to fully diversifying their portfolios, thereby
exposing them to idiosyncratic risks.

Inspired by the vast empirical evidence that households’ consumption reacts to house
price shocks (Attanasio et al., 2011; Mian et al., 2013; Stroebel and Vavra, 2019), I will
setup a model in which idiosyncratic consumption depends on house price volatility.
Based on household-level data, several papers have been able to isolate confounding
factors, such as income expectations, to show that unexpected house price shocks
causally lead to changes in consumption (e.g. Campbell and Cocco, 2007). More recently,
Berger et al. (2018) show that large consumption responses to house price movements
are fully in line with workhorse models of consumption with incomplete markets.

I build on the seminal work by Constantinides and Duffie (1996) to construct a
housing asset-pricing model in which idiosyncratic price risk is a priced state variable,
as idiosyncratic housing price volatility affects the average household’s marginal utility
through consumption. Since households cannot completely insulate their consumption
from persistent shocks to their income (Blundell et al., 2008), the volatility of households’
consumption growth distribution inherits the same factor structure as the volatility
in property-level prices. In other words, persistent, idiosyncratic price shocks that hit
houses are an important source of undiversifiable risk to households. Housing price risk
thus enters the pricing kernel of households and, as a result, is a priced state variable.

This approach is very similar to the work from Herskovic et al. (2016). The authors
build a heterogenous agent incomplete markets model, in which the idiosyncratic
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component of households’ consumption follows the same structure as the common
idiosyncratic volatility of firms’ dividends. Since households cannot diversify away the
idiosyncratic component of consumption, the firms’ idiosyncratic volatility is priced in
equilibrium. In contrast to stocks, idiosyncratic volatility in real estate arises mostly
from shocks to house prices at the point of sale and re-sale. As such, it makes more sense
to think of house price shocks as being the source of undiversifiable risk to households,
rather than shocks to value of housing dividends (rents).

The theoretical framework presented here has two main caveats. Firstly, it considers
only one risky asset, namely housing, thus ignoring any common risk sources that
might arise from the covariance structure of returns to housing and other assets. Since
this paper focuses on idiosyncratic risk, I abstract from several sources of common risk.
Secondly, the model views housing as an investment good and does not consider its
nature as a consumption good. However, as I demonstrate in more detail, this abstraction
does not affect the main results of the model.

B.1 A Consumption Asset-Pricing Model with Idiosyncratic Risk

B.1.1 Setup

Households can invest both in a riskless asset with return r f and in housing with

return Rh
t+1 =

Ph
t+1+Dh

t+1
Ph

t
, where Pt is the price and Dt the value of the housing services

provided by the house at time t.
Following Berk et al. (1999), I parameterize directly the pricing kernel without

explicitly modelling the consumer’s problem. The individual log stochastic discount
factor is then:

mi
t+1 = logβ − γbi

[
σp,t+1υidio,t+1 + σidio,t+1ρi

t+1 −
1
2

σ2
idio,t+1

]
(37)

This equation can be motivated by assuming a fictitious consumer side problem with
heterogeneous agents with power utility and a relative risk aversion coefficient, γ. The
heterogeneity among home buyers comes from the fact that they will have different
consumption sensitivities to house price shocks, given by the parameter bi. This is
motivated by the empirical evidence on the heterogeneity of consumption responses to
house price shocks, for ex. older households respond more than younger households
(Campbell and Cocco, 2007). Under this setup we can write the log individual sdf as:

mi
t+1 = logβ − γ[bi∆ci

t+1]. (38)

Following Constantinides and Duffie (1996) I will write log individual consumption ci

both as function of aggregate log consumption cA as well as of the individual log share
of aggregate consumption si: ∆ci

t+1 = bi(∆cA
t+1 + ∆si

t+1), (39)
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By linking aggregate consumption and the individual shares to house price shocks in
reduced form as:

∆cA
t+1 = σp,t+1υt+1 (40)

∆si
t+1 = σidio,t+1ρi

t+1 −
1
2

σ2
idio,t+1 (41)

Equation 37 follows from the above equations. Note that while aggregate consumption
growth is homoskedastic, individual consumption growth is not:

Ei[∆si
t+1] = −1

2
σ2

idio,t+1 (42)

Vi[∆si
t+1] = σ2

idio,t+1 (43)

Assuming there are N housing investors in the economy, and that these investors
have the same level of risk aversion we can write the average markets’ sdf as the sum of
the individual investors’ sdf. Define Ei =

1
N ∑N

i=1 and note that since the idiosyncratic
shock has mean zero, then, applying the law of large numbers, the term σidioρi converges
to zero when we sum over the individual investors. Then we have:

Eimi
t+1 = Ei(−δ − γ∆ci

t+1) (44)

mm
t+1 = −δ − γ(σp,t+1υt+1) +

1
2

σ2
idio,t+1, (45)

where it becomes clear that the markets’ sdf not only varies with aggregate housing
price volatility, but also with the cross-sectional variance of housing prices, which is
determined by the idiosyncratic housing price shocks. Assuming the pricing kernel is
derived from the FOC of the consumer problem, I can write the riskless asset log return
as:

1 = Et[mm
t+1r f

t+1]

⇐⇒ r f
t+1 = δ + γ(σp,t+1υt+1)−

1
2

σ2
idio,t+1, (46)

the log housing premium as:

Et(rh
t+1)− r f

t+1 = −r f
t+1 ∗ cov(mm

t+1, rh
t+1), (47)

where rh
t+1 is the total return to house h in period t + 1. Multiplying and dividing by

the variance of the markets’ stochastic discount factor we can write the log housing
premium in the standard beta representation form as:

Et(rh
t+1)− r f

t+1 = βpγσ2
p,t+1 + βidioγσ2

idio,t+1. (48)

This equation provides a linear relation between housing excess returns, systematic risk,
σp, and idiosyncratic risk, σidio. In the next sections, I will first measure σidio and then
test whether I can find a significant impact on housing returns.
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C Transaction-level data set

C.1 All sales

Table 7: Summary statistics for all apartment sales by city

Berlin

N Mean SD P25 Median P75

Price (thousand €) 190144 216 176.4 93.3 160.1 285

Size (m2) 190144 76 29.9 55.1 70 92.7
Construction year 190144 1943 45.5 1905 1928 1991

Residuals, ui,tq (%) 190144 0 29.7 -17.6 0 19.2
Rental yield (%) 190144 3.4 1.8 2.2 3 4.1

Hamburg

N Mean SD P25 Median P75

Price (thousand €) 81840 296 256.6 128 222.5 376

Size (m2) 81840 77 31 56 72 92.5
Construction year 81840 1972 38.4 1955 1974 2008

Residuals, ui,tq (%) 81840 0 24.8 -13.3 0 15.4
Rental yield (%) 81840 4.3 2 3 3.9 5.2

Cologne

N Mean SD P25 Median P75

Price (thousand €) 108103 159 124.4 80 122 195

Size (m2) 108103 71 25.8 54 69 86

Construction year 108103 1972 25.6 1959 1972 1990

Residuals, ui,tq (%) 108103 0 25.1 -14.3 0 15.8
Rental yield (%) 108103 5.5 2.3 3.9 5.2 6.7

Duesseldorf

N Mean SD P25 Median P75

Price (thousand €) 48893 184 175.7 81.3 126 214

Size (m2) 48893 76 30.2 55 72 93

Construction year 48893 1965 27.5 1954 1965 1982

Residuals, ui,tq (%) 48893 0 26.3 -15.3 0 15.8
Rental yield (%) 48893 4.9 2.2 3.5 4.6 5.8

Note: Table reports summary statistics for all apartment sales for Berlin (1986-2022), Hamburg (2002-2022),
Cologne (1989-2022) and Duesseldorf (1984-2022). Note that before 1992 the data for Berlin refers only to West-
Berlin. Prices are in nominal terms.

C.2 Distribution of idiosyncratic price deviations

C.3 Transaction data for Hamburg

In this section of the appendix, I provide a more detailed description of the method
used to measure price dispersion at the transaction apartment level in the city of
Hamburg. In the original dataset containing transactions for the city of Hamburg,
information on apartment identification is missing in most cases. Consequently, it is
impossible to identify repeated transactions of the same apartments over time. This
limitation accounts for the low number of repeated sales available for the analysis of the
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Figure 9: Distribution of idiosyncratic price deviations by city
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This figure shows the distribution of residuals from equation (1) for Cologne (a), Berlin (b) and Hamburg (c).

effects of predicted dispersion on total returns and capital gains. Therefore, for Hamburg,
I measure price dispersion without including apartment fixed effects. I employ the
following specification to measure price deviations at the transaction apartment level:

ln(pi,tq) = bi + ηtm + κn,tq + fc(xi, ty) + ui,tq, (49)

where ui,tq is a mean-0 error term with variance σ2 and bi is a building fixed-effect. The
other terms in the regression are the same as in the baseline specification (1). The most
significant deviation from the baseline specification is that I am no longer controlling for
apartment-specific features. Instead, I am accounting for features that remain constant
within the building, such as the exact location.

D Distribution of dispersion across space and time

By definition, a idiosyncratic shock should be uncorrelated with common shocks.
More precisely, for each property i E[eitµt] = 0. Measuring common shocks directly is
extremely complicated in housing markets, since this would require additional data
on the supply and demand of housing markets. However, it is possible to measure
common movements in the market. In other words, if the value of an apartment in the
changes in response to a common shock, then we would expect the values of similar
apartments nearby to also change. On the other hand, if the value changes in response
to an idiosyncratic (property-level) shock, then we do not expect the value of similar
apartments nearby to change. The idiosyncratic component of housing prices should
be independently distributed across apartments. To test for this, I estimate spatial
correlation in idiosyncratic shocks using Morans’I . A positive Morans’I indicates that
apartments with positive residuals are surrounded by other apartments with positive
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residuals.28 Figure 10 plots Morans’I for sales prices, property-level capital gains and
idiosyncratic shocks of apartments sold in the same year in Cologne for the period
between 1989 and 2022. Log sales prices and capital gains show a positive and significant
spatial autocorrelation, which intuitively decreases with distance. If an apartment is
sold for a high price, then probably the neighboring apartments will also sell for a high
price. For idiosyncratic price shocks, I cannot reject the hypothesis that the correlation is
0, even when looking only at apartments sold within a three kilometer radius.

Figure 10: Spatial autocorrelation in housing market outcomes
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Note: Morans’I is estimated for apartments sold in the same year and within the given km radius for the city of
Cologne between 1989 and 2022. The Figure shows the simple average across years of Morans’I for each radius.
95% confidence interval bands are shown in the shaded areas.

For the idiosyncratic shocks to matter, their variance needs to be persistent over time.
If idiosyncratic shocks to housing prices would be transitory, then one could easily make
the argument that a buyer should not care about such shocks. In other words, I want to

28Morans’I test for spatial autocorrelation is estimated as:

I =
N

∑i ∑j wi,j

∑i ∑j wi,j(xj − x̄)(xi − x̄)

∑i(xi − x̄)2

with dij being the distance between apartment i and j in kilometers, k is the maximum radius in km and
wij is one if the distance between i and j is smaller than k.
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test whether a large shock to a specific property todays, predicts a large shock in the
future. Following the empirical evidence on idiosyncratic housing price shocks, here I
am considering shocks that occur at the points of sale and re-sale. Specifically, I test for
all pairs of transactions in the data set whether the variance of the shock at the point of
sale predicts the variance of the shock at the point of re-sale:

u2
i2 = β1u2

i1 + β2hpi + κnt + λm + ϵit, (50)

where ei2 and ei1 are the idiosyncratic price shocks at the points of re-sale and sale
respectively of property i. hpi measures the holding period in months for property i,
while δm are monthly fixed effects and κt are neighborhood fixed effects. The results
can be found in Table 8, which shows that properties sold and re-sold on the same in
the same month and neighborhood show considerable persistence in their idiosyncratic
shocks. An increase in one standard deviation of the sales’ shock predicts an increase
in 0.66 standard deviations in the resale shock. One concern is that these results are
being driven by the buyers, if a specific buyer is bad at pricing a house at the moment
of sale, then probably as well at the moment of re-sale. This could potentially explain
the high level of persistence in the variance. To address this concern, I show that
the persistence in variance is also strongly positive and statistically significant when
testing the relation between first and third sale. The results can be found in Table 9 in
Appendix ??. Additionally, the cross-sectional correlation at the point of sale and re-sale
of idiosyncratic shocks is 0.66, which is higher that than most risk factors used in the
stock pricing literature (Bali et al., 2016). The results can also be found in Appendix ??.

Table 8: Persistence in the variance of idiosyncratic shocks

u2
i2 u2

i2
u2

i1 0.6485
∗∗∗

0.6479
∗∗∗

(0.0166) (0.0167)

Holding period Yes Yes

Month-sale FEs Yes Yes

Neighborhood FEs No Yes
N 34060 34060

R2
0.43 0.43

Standard errors are clustered at the neighborhood-level (Stadtbezirk). Coefficients are standardized. Singletons were
dropped. ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

In Table 9, I test whether the variance of the idiosyncratic shock at the point of the
first sales predicts the variance of the shock at the third sale.

In Figure 11, I plot the Pearson cross-sectional correlation in idiosyncratic shock
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Table 9: Persistence in the variance of idiosyncratic shocks

u2
i3 u2

i3
u2

i1 0.3161
∗∗∗

0.3144
∗∗∗

(0.0257) (0.0260)

Holding period Yes Yes

Month-sale FEs Yes Yes

Neighborhood FEs No Yes
N 7244 7244

R2
0.13 0.14

Standard errors are clustered at the neighborhood-level (Stadtbezirk). Coefficients are standardized. Singletons were
dropped. ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

variance by holding period. The average cross-section correlation is 0.66 indicating that
the variance of the shocks is highly persistent over time. In contrast, the cross-sectional
correlation of market betas is at most 0.60 and decreases with the time distance. In the
case of idiosyncratic housing price shocks, the cross-section correlation increases with
the holding period, indicating that the variance of the shocks is more persistent for pairs
of sales more distant in time.

Figure 11: Pearson cross-section correlation in the predicted price dispersion
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Note: Figure shows Pearson cross-section correlation of standardized residuals from sale 1 and 2 for different holding
periods.
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E Hedonic price and rental yield indices

In this section of the appendix, I describe the hedonic methods employed to construct
the two components of the total housing return portfolio quarterly time-series. Both for
the price index as well as the rental yield index, I employ a rolling-window time-dummy
hedonic index. The rolling-window component assures that the coefficients can change
over time, i.e. the effect of age on the price can change over time. I set the rolling
window at 20 quarters. More specifically, I employ the following log-linear specification:

ln(yi,tq) = β0 +
20

∑
τ

γτDτ +
K

∑
k=1

(βkxk
i ) + ϵi,tq, (51)

where the log dependent variable (transaction price, rental yield) for property i in
quarter tq is regressed on a time-dummy Dτ and a set of property characteristics xi,
which consist of apartment size, age and neighborhood.

F Idiosyncratic price uncertainty, sales prices and rents

F.1 Regression results for the main sample

In this section of the appendix, I provide the regression output tables for the analyses
that form the basis of Figure ?? in the paper. Figure ?? illustrates the relationship
between predicted price dispersion and both sales prices and rents for each city in
the sample. The regression output is displayed in the following tables for each city
separately. Please note that the specification that underlies the binned scatter in the
paper is always in columns 2 and 4 for sales price and net rent respectively. From
the tables, it is visible that the coefficient of predicted price dispersion on sales prices
is much larger than the one on net rents. Additionally, the coefficient on net rents is
mostly statistically insignificant, indicating that rents decrease very only slightly with
idiosyncratic price uncertainty.
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Table 10: Predicted price dispersion, sales prices and rent (Berlin)

Sales Price Sales Price Net Rent Net Rent
Predicted dispersion, σ̂it -13.88

∗∗∗ -0.65
∗∗∗ -22.03

∗∗∗
0.15

(1.341) (0.129) (2.708) (0.183)

Year-quarter FEs Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes

Property characteristics No Yes No Yes
N 67194 67194 67194 67194

R2 -3.89 0.70 -8.08 0.93

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables have been
standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory variable
of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of (7).
∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 11: Predicted price dispersion, sales prices and rent (Hamburg)

Sales Price Sales Price Net Rent Net Rent
Predicted dispersion, σ̂it -9.72

∗∗∗ -1.51
∗∗∗ -12.13

∗∗∗
0.31

(0.976) (0.209) (1.338) (0.227)

Year-quarter FEs Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes

Property characteristics No Yes No Yes
N 52647 52647 52647 52647

R2 -2.06 0.70 -2.61 0.92

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables have been
standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory variable
of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of (7).
∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.
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Table 12: Predicted price dispersion, sales prices and rent (Cologne)

Sales Price Sales Price Net Rent Net Rent
Predicted dispersion, σ̂it -34.36

∗∗∗ -1.45
∗∗∗ -42.12

∗∗∗
0.80

∗

(3.671) (0.443) (4.456) (0.424)

Year-quarter FEs Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes

Property characteristics No Yes No Yes
N 50029 50029 50029 50029

R2 -4.30 0.82 -6.84 0.96

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables have been
standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory variable
of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of (7).
∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 13: Predicted price dispersion, sales prices and rent (Duesseldorf)

Sales Price Sales Price Net Rent Net Rent
Predicted dispersion, σ̂it -17.71

∗∗∗ -2.47
∗∗∗ -18.58

∗∗∗ -0.80
∗∗∗

(1.326) (0.314) (1.379) (0.189)

Year-quarter FEs Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes

Property characteristics No Yes No Yes
N 25971 25971 25971 25971

R2 -3.78 0.68 -4.63 0.86

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables have been
standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory variable
of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of (7).
∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.
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F.2 Regression results for the sub-sample

In this subsection, I examine the relationship between predicted price dispersion
and sales prices and rents, utilizing a subsample of observations for which data on
both rent and sales price are available. The results mirror the patterns observed in the
analysis of the full sample, indicating that prices tend to decrease more than rents in
response to idiosyncratic price uncertainty. However, it is noteworthy that in some cities,
the coefficients loose statistical significance. This was expected given the considerable
reduction in the sample size.

Table 14: Idiosyncratic price uncertainty, sales prices and rent (Berlin-subsample)

Sales Price Sales Price Net Rent Net Rent
Predicted dispersion, σ̂it -1.93

∗∗∗ -1.31
∗∗∗ -2.48

∗∗∗ -0.60
∗

(0.454) (0.326) (0.516) (0.317)

Year-quarter FEs Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes

Property characteristics No Yes No Yes
N 13466 13466 13466 13466

R2
0.04 0.72 -0.07 0.62

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables have been
standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory variable
of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of (7).
∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 15: Idiosyncratic price uncertainty, sales prices and rent (Hamburg-subsample)

Sales Price Sales Price Net Rent Net Rent
Predicted dispersion, σ̂it -1.89

∗∗∗ -0.86
∗∗∗ -1.88

∗∗∗ -0.42

(0.378) (0.247) (0.494) (0.322)

Year-quarter FEs Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes

Property characteristics No Yes No Yes
N 8651 8651 8651 8651

R2
0.03 0.66 -0.03 0.56

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables have been
standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory variable
of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of (7).
∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.
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Table 16: Idiosyncratic price uncertainty, sales prices and rent (Duesseldorf-subsample)

Sales Price Sales Price Net Rent Net Rent
Idiosyncratic uncertainty, σ̂it -5.85

∗∗∗ -0.50 -6.67
∗∗∗

0.08

(0.766) (0.408) (0.868) (0.169)

Year FEs Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes

Property characteristics No Yes No Yes
N 1321 1321 1321 1321

R2
0.40 0.86 0.25 0.96

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables have been
standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory variable
of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of (7).
∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.
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G Price uncertainty and dispersion of prices

In this section of the appendix, I show how price uncertainty also affects the second
moment of the distribution of transaction prices. Since I do not observe properties that
have been sold every period, my analysis will explore the cross-sectional variation in
prices of similar houses. My analysis will follow two steps. In the first step, I residualize
the transaction prices using property characteristics and time and location fixed effects.
In a second step, I split the transactions into 10 different bins depending on their level of
price uncertainty. I then calculate the standard deviation of prices within those bins and
plot them in Figure 12. From the Figure it becomes clear that properties with higher
ex-ante price uncertainty also have a higher standard deviation of prices. This means
that price uncertainty predicts lower prices and higher dispersion.

Figure 12: Price uncertainty and dispersion of prices
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(c) Cologne
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(d) Duesseldorf
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Note: The figure displays the standard deviation of residualized log transaction prices across the price
uncertainty distribution for the different cities in the data set.
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H Predicted dispersion and returns to housing - regression

output

Table 17: Predicted dispersion and total returns, Berlin (1984-2022)

Rental Yields Capital Gains Total Returns
Predicted dispersion, σ̂i,tq 2.56

∗∗∗
4.70 7.71

∗∗

(0.445) (2.806) (3.061)

Year-quarter FEs Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes

Property characteristics Yes Yes Yes

Holding period FEs No Yes Yes
N 67194 33309 33309

R2
0.12 0.35 0.32

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk) and are adjusted for the estimated
regressors. Singletons were dropped. The explanatory variable of interest is predicted dispersion. The first column
displays the results of 2SLS regressions as in (7). Columns 2 and 3 display the results of the two-step regression as
in (13). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 18: Predicted dispersion and total returns, Hamburg (2001-2022)

Rental Yields Capital Gains Total Returns
Predicted dispersion, σ̂i,tq 8.72

∗∗∗ -1.04 1.74

(0.768) (7.500) (8.281)

Year-quarter FEs Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes

Property characteristics Yes Yes Yes

Holding period FEs No Yes Yes
N 49506 1741 1741

R2 -0.06 0.27 0.28

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk) and are adjusted for the estimated
regressors. Singletons were dropped. The explanatory variable of interest is predicted dispersion. The first column
displays the results of 2SLS regressions as in (7). Columns 2 and 3 display the results of the two-step regression as
in (13). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.
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Table 19: Predicted dispersion and total returns, Cologne (1989-2022)

Rental Yields Capital Gains Total Returns
Predicted dispersion, σ̂i,tq 16.28

∗∗∗
7.61 16.77

∗∗

(3.368) (4.544) (6.220)

Year-quarter FEs Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes

Property characteristics Yes Yes Yes

Holding period FEs No Yes Yes
N 49963 27069 27069

R2 -0.17 0.31 0.28

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk) and are adjusted for the estimated
regressors. Singletons were dropped. The explanatory variable of interest is predicted dispersion. The first column
displays the results of 2SLS regressions as in (7). Columns 2 and 3 display the results of the two-step regression as
in (13). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 20: Predicted dispersion and total returns, Duesseldorf (1984-2022)

Rental Yields Capital Gains Total Returns
Predicted dispersion, σ̂i,tq 6.59

∗∗∗
1.22 5.76

∗∗

(0.730) (1.605) (2.049)

Year-quarter FEs Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes

Property characteristics Yes Yes Yes

Holding period FEs No Yes Yes
N 25238 13037 13037

R2
0.15 0.27 0.25

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk) and are adjusted for the estimated
regressors. Singletons were dropped. The explanatory variable of interest is predicted dispersion. The first column
displays the results of 2SLS regressions as in (7). Columns 2 and 3 display the results of the two-step regression as
in (13). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

H.1 Predicted dispersion and rental yields - robustness

To address any biases that might arise from the matching process between transaction
prices and rental values, I replicate the exercise in the previous sectios using only
the subsample of transactions for which I also observe the rent data at the point
of transaction. The results can be found in Figure 13, which shows that the main
results hold. Comparing transactions in the same neighborhood and year-quarter and
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controlling for size and property characteristics, the data shows that properties with
higher predicted dispersion, on average, have significantly higher rental yields than the
rest.

Figure 13: Rental yields and predicted dispersion using observed rent data
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(b) Hamburg
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(c) Duesseldorf
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P-value = 0.0201
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Note: The first and last columns display a binscatter of log sales price and rental yields on idiosyncratic risk
respectively. The second columns displays a binscatter of capital gains on the sum idiosyncratic risk from sale and
re-sale. In all binscatters the underlying regressions include year-quarter and neighborhood fixed-effects as well as
controls for property characteristics.

H.2 Predicted dispersion and rental yields - multi-family housing

In this section of the appendix, I present the regression outputs that form the basis
for the results regarding the relationship between predicted dispersion and rental yields
in the multi-family housing market. The tables that follow are generated from regression
equation (7) with the ratio of net rental income to transaction price of multi-family
houses as the dependent variable. The data samples used are drawn from multi-family
housing transactions in Berlin spanning the period from 1970 to 2022 and in Hamburg
from 1991 to 2022. For this analysis, I include only those transactions for which both the
rental income and the transaction price are observed.
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Table 21: Predicted dispersion and rental yields for multi-family housing, Berlin (1970-2022)

Rental Yield Rental Yield Rental Yield (wo mixed-use)
Predicted Dispersion, σ̂i,tq 2.38

∗
5.03

∗∗
4.17

∗∗

(1.306) (1.031) (1.139)

Year-quarter FEs Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes

Property characteristics No Yes Yes
N 14332 14332 6841

R2
0.00 -0.07 -0.02

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk) and are adjusted for the estimated
regressors. Singletons were dropped. The explanatory variable of interest is predicted dispersion. All the columns
display the results of 2SLS regressions as in (7) with ratio of net rental income to transaction price as the outcome
variable The third column displays results only for the sample of multi-family housing that do not have any kind of
commercial properties. ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 22: Predicted dispersion and rental yields for multi-family housing, Hamburg (1991-2022)

Rental Yield Rental Yield Rental Yield (wo mixed-use)
Predicted Dispersion, σ̂i,tq 7.93

∗∗
8.60

∗∗
6.76

∗∗∗

(3.259) (3.366) (2.006)

Year-quarter FEs Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes

Property characteristics Yes Yes Yes
N 7633 7633 5171

R2 -0.00 -0.02 0.02

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk) and are adjusted for the estimated
regressors. Singletons were dropped. The explanatory variable of interest is predicted dispersion. All the columns
display the results of 2SLS regressions as in (7) with ratio of net rental income to transaction price as the outcome
variable The third column displays results only for the sample of multi-family housing that do not have any kind of
commercial properties. ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.
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I Robustness Tests

I.1 All sales

In this section of the Appendix, I present the results for the analysis in which I utilize
all property sales data to measure value uncertainty at the transaction property level,
not just focusing on repeated property sales. The objective of this analysis is to ensure
that the results are not influenced by specific characteristics of properties that are sold
more frequently, which could distinguish them from the rest of the housing stock. The
results for each city can be found in the tables below. These results corroborate the
findings from the baseline analysis. Properties with higher value uncertainty are, on
average, transacted at lower prices and yield higher rental returns. Once again, there is
no statistically significant relationship between value uncertainty and the rental value of
the property, affirming that the rental market is relatively liquid, and therefore, these
properties are not rented out at a discount.

Table 23: Predicted price dispersion, sales prices and rent using all sales (Berlin 1984-2022)

Sales Price Sales Price Net Rent Net Rent Rental Yield Rental Yield
Predicted dispersion, σ̂it -5.91

∗∗∗ -1.11
∗∗∗ -8.68

∗∗∗ -0.09 2.23
∗∗

4.72
∗∗∗

(0.545) (0.182) (1.132) (0.235) (0.930) (0.530)

Year-quarter FEs Yes Yes Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes Yes Yes

Property characteristics No Yes No Yes No Yes
N 190144 190144 190144 190144 190144 190144

R2 -1.70 0.63 -3.27 0.90 0.09 0.07

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables in columns 1 to 4
have been standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory
variable of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of
(7). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.
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Table 24: Predicted price dispersion, sales prices and rent using all sales (Hamburg 2001-2022)

Sales Price Sales Price Net Rent Net Rent Rental Yield Rental Yield
Predicted dispersion, σ̂it -6.72

∗∗∗ -1.39
∗∗∗ -7.76

∗∗∗
0.85

∗∗∗
7.87

∗∗∗
9.25

∗∗∗

(1.273) (0.211) (1.678) (0.147) (0.817) (1.128)

Year-quarter FEs Yes Yes Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes Yes Yes

Property characteristics No Yes No Yes No Yes
N 81840 81840 81840 81840 81840 81840

R2 -1.78 0.69 -1.93 0.89 -0.06 -0.21

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables in columns 1 to 4
have been standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory
variable of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of
(7). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 25: Predicted price dispersion, sales prices and rent using all sales (Cologne 1989-2022)

Sales Price Sales Price Net Rent Net Rent Rental Yield Rental Yield
Predicted dispersion, σ̂it -6.81

∗∗∗ -0.27 -7.33
∗∗∗

0.87
∗∗

7.70
∗∗∗

5.52
∗∗∗

(1.169) (0.303) (1.056) (0.292) (2.012) (0.552)

Year-quarter FEs Yes Yes Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes Yes Yes

Property characteristics No Yes No Yes No Yes
N 108103 108103 108103 108103 108103 108103

R2 -1.44 0.71 -1.79 0.91 -0.03 0.13

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables in columns 1 to 4
have been standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory
variable of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of
(7). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 26: Predicted price dispersion, sales prices and rent using all sales (Duesseldorf 1984-2022)

Sales Price Sales Price Net Rent Net Rent Rental Yield Rental Yield
Predicted dispersion, σ̂it -7.54

∗∗∗ -0.53
∗∗∗ -8.02

∗∗∗
0.74

∗∗∗
9.72

∗∗∗
6.90

∗∗∗

(1.087) (0.164) (1.163) (0.111) (1.592) (0.914)

Year-quarter FEs Yes Yes Yes Yes Yes Yes

Year × Neighborhood FEs Yes Yes Yes Yes Yes Yes

Property characteristics No Yes No Yes No Yes
N 48893 48893 48893 48893 48893 48893

R2 -2.34 0.73 -2.84 0.85 -0.28 0.06

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). The outcome variables in columns 1 to 4
have been standardized to have mean 0 and standard deviation of one. Singletons were dropped. The explanatory
variable of interest is predicted price dispersion. The coefficients are estimated in the 2SLS regression framework of
(7). ∗ : p < 0.1; ∗∗ : p < 0.05; ∗ ∗ ∗ : p < 0.01.
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I.2 Different measures of predicted dispersion

This suggests that a significant proportion of the impact of my measure of idiosyn-
cratic risk on sales prices can be attributed to variations in observable property traits. To
tackle this issue, I devise an instrumental variable that approximates the idiosyncratic
price risk without being directly dependent on the property characteristics. Following
Jiang and Zhang (2022), I build an instrument based on the distance of the properties’ i
characteristics to the mean characteristics of the properties’ sold in the same city and
within the same period:

Zm
it = (Xm

it − X̄m
ct)

2, ∀m ∈ {size, age, location}. (52)

This measure captures the degree of thinness in the local property market for property i,
which in turn reflects the uncertainty surrounding its sales price. For instance, pricing
an old and large apartment in a neighborhood predominantly composed of new and
small apartments can be challenging. Additionally, I also build a measure based directly
on the relative frequency of the combination of characteristics of an apartment. Every
quarter I assign each transaction a specific bin depending on its size, location and age.
The idea is to capture how frequently a specific combination of characteristics appears
on the market at a given point in time:

Zm
it =

obsit

obst
, ∀m ∈ {size, age, location} (53)

Building upon these concepts, I perform two-stage least squares (2SLS) regressions
by utilizing the distances and the relative frequency Zi as instruments to approximate
the variance of the idiosyncratic price deviations:

Stage 1: u2
it = α + β1Zage

it + β2Zsize
it + β3Zlocation

it (54)

+ BXXi + κnt + µd + eit (55)

Stage 2: ln(Pit) = α + γûit + BXXi + κnt + µd + ϵit. (56)

The outcome of the 2SLS regressions for Berlin are presented in Table 27 and for
Hamburg in Table 28. For the purpose of comparison, I have also included the results
of my main baseline analysis in the first column. The coefficients remain negative and
highly statistically significant, and it are of similar size to the coefficient of my baseline
analysis. This indicates that these measures directly capture a significant portion of the
variation in the sales price that is not explained by the property characteristics or the
time-fixed effects, but rather by the degree of idiosyncratic sales price risk.
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Table 27: Log sales prices and idiosyncratic risk (Berlin, 1989-2022)

Benchmark Distance Frequency
Log idiosyncratic risk, σ̂it -0.0444

∗∗∗ -0.0323
∗∗∗ -0.0484

∗∗∗

(0.0144) (0.0063) (0.0081)

Year-month FEs Yes Yes Yes

Quarter × Neighborhood FEs Yes Yes Yes

Property characteristics Yes Yes Yes
N 69123 69123 69123

R2
0.63 0.64 0.63

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). Coefficients are estimated via two-stage
least squares. Singletons were dropped. The explanatory variable of interest is idiosyncratic risk. ∗ : p < 0.1; ∗∗ :
p < 0.05; ∗ ∗ ∗ : p < 0.01.

Table 28: Log sales prices and idiosyncratic risk (Hamburg, 2002-2022)

Benchmark Distance Frequency
Log idiosyncratic risk, σ̂it -0.0297

∗∗∗ -0.0407
∗∗∗ -0.0261

∗∗∗

(0.0073) (0.0043) (0.0077)

Year-month FEs Yes Yes Yes

Quarter × Neighborhood FEs Yes Yes Yes

Property characteristics Yes Yes Yes
N 53824 53824 53824

R2
0.70 0.69 0.70

Note: Standard errors are clustered at the neighborhood-level (Stadtbezirk). Coefficients are estimated via two-stage
least squares. Singletons were dropped. The explanatory variable of interest is idiosyncratic risk. ∗ : p < 0.1; ∗∗ :
p < 0.05; ∗ ∗ ∗ : p < 0.01.

I.3 Building renovations and predicted dispersion

In Figure 14, panel a, I plot the excess returns adjusted for the exposure to the market
portfolio for all the six portfolios. Again, the portfolio containing the properties with the
highest level of idiosyncratic risk overperforms all the othe portfolios. Panel b shows
that the exposure to the market portfolio is almost flat across the idiosyncratic risk
ditribution.

I.4 Length of holding periods and predicted dispersion

Following the same steps as before, I build different portfolios based on this new
measure of the variance of shocks. I then compare the returns to these portfolios and
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Figure 14: Excess returns with building-time fixed effects, Cologne 1989-2022
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Note: The six equally-sized portfolios are built based on predicted variance of idiosyncratic shocks quantiles from
equation 17. Standard errors are adjusted for time-series autocorrelation using Newey-West with 4 quarter lags.

find the same pattern as in the baseline analysis.

Figure 15: Excess returns controlling for holding periods, Cologne 1989-2022

(a) alpha

0
.5

1
1.

5
2

2.
5

Ex
ce

ss
 to

ta
l r

et
ur

ns

1 2 3 4 5 6
Predicted dispersion

Alpha
CI 95%

(b) market beta

0
.5

1
1.

5
2

2.
5

Ex
ce

ss
 to

ta
l r

et
ur

ns

1 2 3 4 5 6
Predicted dispersion

Market Beta
CI 95%

Note: The six equally-sized portfolios are built based on predicted variance of idiosyncratic shocks quantiles from
equation ??. Standard errors are adjusted for time-series autocorrelation using Newey-West with 6 quarter lags.

J Rent data sources

J.1 Source

The rent data comes from the so-called ’Mietspiegel,’ which are documents produced
at the city level containing estimates for the average rent per square meter for apartments
in the private market, depending on their size, building year, location and condition.
The data is collected via a survey, and then the aggregate estimates are published every
two years. The Mietspiegel provides benchmark rents that can be used by landlords to
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set their rents. If the rents deviate significantly from the benchmarks provided in the
Mietspiegel, tenants have the option to file an official complaint. In such cases, landlords
are obliged to adjust the rents to a level that aligns more closely with the Mietspiegel
benchmarks. The publication of the Mietspiegel is typically the responsibility of the
city. Until the 2000s, the data collection and estimates in the Mietspiegel were mostly
produced by the city itself. Since then, most cities have started to hire specialized
companies, which typically survey larger samples and produce rent estimates based on
hedonic regressions. As a result, the quality of the estimates has substantially improved
in the last 20 years (Steffen and Memis, 2021). The quality of the estimates provided by
the Mietspiegel has been examined in several research papers. Specifically, researchers
have sought to analyze the reliability of rental estimates derived from the Mietspiegel
by comparing them to estimates based on alternative sources of rent data. In a study by
Thomschke (2022), micro-level rents from the German census and online asking rents
were utilized to generate rent estimates for the segments represented in the Mietspiegel
for major German cities. The authors then compared their own estimates with those
from the Mietspiegel and found minimal differences, thus affirming the validity of the
estimates provided by the Mietspiegel. On the other hand, Rendtel et al. (2021) claims
that the Berlin Mietspiegel underestimates the average value of rents by approximately
14% due to oversampling of large landlords. However, it is worth noting that this
bias appears to be evenly distributed across all rent classes and, therefore, does not
significantly impact the comparisons across rent classes, which are more relevant for the
results I present.

Overall, the key point is that rental returns tend to increase with idiosyncratic risk.
This relationship is clearly evident in cases where I have access to both rental and price
data for the same property. Furthermore, it appears that this relationship holds true
when using the Mietspiegel data as well, indicating its reproducibility.

J.2 Matching process

All the rent estimates provided in the Mietspiegel are net of utilities, meaning they
do not include heating, water, electricity, and maintenance costs. The rent estimates are
provided based on different criteria such as building years, size, location, and condition
of the apartments. Additionally, only monthly rent per square meter estimates are
provided. Regarding building years, the Mietspiegel typically distinguishes between
apartments built before WWI, between WWI and WWII, and provides estimates for each
post-WWII decade. In terms of size, the Mietspiegel typically categorizes apartments
as less than 40 square meters, between 40 and 60 square meters, between 60 and 90

square meters, and more than 90 square meters. For location, the Mietspiegel usually
differentiates between regions of varying quality within the city, commonly referred
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to as bad, middle, and good-quality regions. In most cases, the information about
location quality is already available in the transaction data set. Lastly, the Mietspiegel
also distinguishes between apartments with an own bathroom or central heating and
those that have both of these amenities. As is expected, the rents are higher for those
apartments, which have both of these amenities. This distinction is typically only done
for apartments that were built before the 1970s, as the majority of apartments built after
have both of these amenities.

Overall, the Mietspiegel provides a wide range of rent per square meter estimates
based on the mentioned characteristics. By using the building year, size, and location
quality, I am able to match the transaction data with the corresponding rent per square
meter estimates. The only category that presents challenges in terms of matching is
whether the apartment has its own bathroom or central heating. As previously stated,
this issue primarily affects properties built before the 1970s.

In my primary analysis, I focus solely on rent estimates for apartments with both
central heating and an own bathroom. However, it’s important to acknowledge that this
approach may introduce potential bias into the results by potentially overestimating the
rental yields for properties with higher idiosyncratic risk.

To address this concern, I conduct a robustness analysis where I match transactions
to the rent data based on the relative value of the transactions in that specific year,
along with their corresponding characteristics. If a property is sold for a price above
the median considering the year, size, and building year, it is matched with the rent
estimate for properties with both central heating and an own bathroom. Conversely, if a
property is sold for a price below the median, it is matched with the rent estimate for
properties with either an own bathroom or central heating. In this case the results are
also hold through.
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